安徽省蚌埠市禹会区北京师范大学蚌埠附属学校2022-2023学年高一上数学期末学业质量监测试题含解析_第1页
安徽省蚌埠市禹会区北京师范大学蚌埠附属学校2022-2023学年高一上数学期末学业质量监测试题含解析_第2页
安徽省蚌埠市禹会区北京师范大学蚌埠附属学校2022-2023学年高一上数学期末学业质量监测试题含解析_第3页
安徽省蚌埠市禹会区北京师范大学蚌埠附属学校2022-2023学年高一上数学期末学业质量监测试题含解析_第4页
安徽省蚌埠市禹会区北京师范大学蚌埠附属学校2022-2023学年高一上数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列说法不正确的是A.方程有实根函数有零点B.有两个不同的实根C.函数在上满足,则在内有零点D.单调函数若有零点,至多有一个2.设集合,,若对于函数,其定义域为,值域为,则这个函数的图象可能是()A. B.C. D.3.若角,均为锐角,,,则()A. B.C. D.4.已知函数是上的偶函数,且在区间上是单调递增的,,,是锐角三角形的三个内角,则下列不等式中一定成立的是A. B.C. D.5.已知为平面,为直线,下列命题正确的是A.,若,则B.,则C.,则D.,则6.函数的部分图象如图所示,则A.B.C.D.7.已知函数在[2,3]上单调递减,则实数a的取值范围是()A. B.C. D.8.已知函数,那么的值为()A.25 B.16C.9 D.39.圆过点的切线方程是()A. B.C. D.10.要得到函数的图象,只需把函数的图象上所有的点()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度二、填空题:本大题共6小题,每小题5分,共30分。11.圆柱的侧面展开图是边长分别为的矩形,则圆柱的体积为_____________12.已知角的终边过点,则_______13.已知函数则不等式的解集是_____________14.幂函数的图像过点,则___________.15.若,,则=______;_______16.正三棱锥P﹣ABC的底面边长为1,E,F,G,H分别是PA,AC,BC,PB的中点,四边形EFGH的面积为S,则S的取值范围是__三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆经过两点,且圆心在直线上.(1)求圆的标准方程;(2)若直线过点,且被圆截得的弦长为,求直线的方程.18.已知直线经过点(1)若点在直线上,求直线的方程;(2)若直线与直线平行,求直线的方程19.设全集U=R,集合,(1)当时,求;(2)若A∩B=A,求实数a的取值范围20.已知函数是定义在1,1上的奇函数,且.(1)求m,n的值;(2)判断在1,1上的单调性,并用定义证明;(3)设,若对任意的,总存在,使得成立,求实数k的值.21.已知函数的图象在定义域上连续不断.若存在常数,使得对于任意的,恒成立,称函数满足性质.(1)若满足性质,且,求的值;(2)若,试说明至少存在两个不等的正数,同时使得函数满足性质和.(参考数据:)(3)若函数满足性质,求证:函数存在零点.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】A选项,根据函数零点定义进行判断;B选项,由根的判别式进行求解;C选项,由零点存在性定理及举出反例进行说明;D选项,由函数单调性定义及零点存在性定理进行判断.【详解】A.根据函数零点的定义可知:方程有实根⇔函数有零点,∴A正确B.方程对应判别式,∴有两个不同实根,∴B正确C.根据根的存在性定理可知,函数必须是连续函数,否则不一定成立,比如函数,满足条件,但在内没有零点,∴C错误D.若函数为单调函数,则根据函数单调性的定义和函数零点的定义可知,函数和x轴至多有一个交点,∴单调函数若有零点,则至多有一个,∴D正确故选:C2、D【解析】利用函数的概念逐一判断即可.【详解】对于A,函数的定义域为,不满足题意,故A不正确;对于B,一个自变量对应多个值,不符合函数的概念,故B不正确;对于C,函数的值域为,不符合题意,故C不正确;对于D,函数的定义域为,值域为,满足题意,故D正确.故选:D【点睛】本题考查了函数的概念以及函数的定义域、值域,考查了基本知识的掌握情况,理解函数的概念是解题的关键,属于基础题.3、B【解析】根据给定条件,利用同角公式及差角的正弦公式计算作答.【详解】角,均为锐角,即,而,则,又,则,所以,.故选:B4、C【解析】因为是锐角的三个内角,所以,得,两边同取余弦函数,可得,因为在上单调递增,且是偶函数,所以在上减函数,由,可得,故选C.点睛:本题考查了比较大小问题,解答中熟练推导抽象函数的图象与性质,合理利用函数的单调性进行比较大小是解答的关键,着重考查学生的推理与运算能力,本题的解答中,根据锐角三角形,得出与的大小关系是解答的一个难点.5、D【解析】选项直线有可能在平面内;选项需要直线在平面内才成立;选项两条直线可能异面、平行或相交.选项符合面面平行的判定定理,故正确.6、A【解析】由题图知,,最小正周期,所以,所以.因为图象过点,所以,所以,所以,令,得,所以,故选A.【考点】三角函数的图象与性质【名师点睛】根据图象求解析式问题的一般方法是:先根据函数图象的最高点、最低点确定A,h的值,由函数的周期确定ω的值,再根据函数图象上的一个特殊点确定φ值7、C【解析】根据复合函数的单调性法则“同增异减”求解即可.【详解】由于函数在上单调递减,在定义域内是增函数,所以根据复合函数的单调性法则“同增异减”得:在上单调递减,且,所以且,解得:.故的取值范围是故选:C.8、C【解析】根据分段函数解析式求得.【详解】因为,所以.故选:C9、D【解析】先求圆心与切点连线的斜率,再利用切线与连线垂直求得切线的斜率结合点斜式即可求方程.【详解】由题意知,圆:,圆心在圆上,,所以切线的斜率为,所以在点处的切线方程为,即.故选:D.10、C【解析】根据三角函数图象的平移变换求解即可.【详解】由题意,为得到函数的图象,只需把函数的图象上所有的点向左平移个单位长度即可.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】有两种形式的圆柱的展开图,分别求出底面半径和高,分别求出体积.【详解】圆柱的侧面展开图是边长为2a与a的矩形,当母线为a时,圆柱的底面半径是,此时圆柱体积是;当母线为2a时,圆柱的底面半径是,此时圆柱的体积是,综上所求圆柱的体积是:或,故答案为或;本题考查圆柱的侧面展开图,圆柱的体积,容易疏忽一种情况,导致错误.12、【解析】由三角函数定义可直接得到结果.【详解】的终边过点,故答案为:.13、【解析】分和0的大小关系分别代入对应的解析式即可求解结论.【详解】∵函数,∴当,即时,,故;当,即时,,故;∴不等式的解集是:.故答案为:.14、【解析】先设,再由已知条件求出,即,然后求即可.【详解】解:由为幂函数,则可设,又函数的图像过点,则,则,即,则,故答案为:.【点睛】本题考查了幂函数的解析式的求法,重点考查了幂函数求值问题,属基础题.15、①.②.【解析】首先指对互化,求,再求;第二问利用指数运算,对数,化简求值.【详解】,,所以;,,所以故答案为:;16、(,+∞)【解析】由正三棱锥可得四边形EFGH为矩形,并可得其边长与三棱锥棱长关系,从而可得面积S的范围.【详解】∵棱锥P﹣ABC为底面边长为1的正三棱锥∴AB⊥PC又∵E,F,G,H,分别是PA,AC,BC,PD的中点,∴EH//FG//AB且EH=FGAB,EF//HG//PC且EF=HGPC则四边形EFGH为一个矩形又∵PC,∴EF,∴S=EFEH,∴四边形EFGH的面积S的取值范围是(,+∞),故答案为:(,+∞)三、三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或.【解析】(1)设圆的方程为,根据题意列出方程组,求得的值,即可求解;(2)由圆的弦长公式,求得圆心到直线的距离为,分类直线的斜率不存在和斜率存在两种情况讨论,即可求得直线的方程.【小问1详解】解:圆经过两点,且圆心在直线上,设圆的方程为,可得,解得,所以圆的方程为,即.【小问2详解】解:由圆,可得圆心,半径为,因为直线过点,且被圆截得的弦长为,可得,解得,即圆心到直线的距离为,当直线的斜率不存在时,直线的方程为,此时圆心到直线的距离为,符合题意;当直线的斜率存在时,设直线的斜率为,可得直线的方程为,即由圆心到直线的距离为,解得,所以直线的方程为,即,综上可得,所求直线方程为或.18、(1)(2)【解析】(1)利用两点式求得直线的方程.(2)利用点斜式求得直线的方程.【小问1详解】∵直线经过点,且点在直线上,∴由两点式方程得,即,∴直线的方程为【小问2详解】若直线与直线平行,则直线的斜率为,∵直线经过点,∴直线的方程为,即19、(1)或(2)【解析】(1)化简集合B,根据补集、并集的运算求解;(2)由条件转化为A⊆B,分类讨论,建立不等式或不等式组求解即可.【小问1详解】当时,,,或,或【小问2详解】由A∩B=A,得A⊆B,当A=∅时,则3a>a+2,解得a>1,当A≠∅时,则,解得,综上,实数a的取值范围是20、(1),(2)在上递增,证明见解析(3)【解析】(1)由为1,1上奇函数可得,再结合可求出m,n的值;(2)直接利用单调性的定义判断即可,(3)由题意可得,而,然后分,和三种情况求解的最大值,使其最大值大于等于,解不等式可得结果【小问1详解】依题意函数是定义在上的奇函数,所以,∴,所以,经检验,该函数为奇函数.【小问2详解】在上递增,证明如下:任取,其中,,所以,故在上递增.【小问3详解】由于对任意的,总存在,使得成立,所以.当,恒成立当时,在上递增,,所以.当时,在上递减,,所以.综上所述,21、(1)(2)答案见解析(3)证明见解析【解析】(1)由满足性质可得恒成立,取可求,取可求,取可求,取求,由此可求的值;(2)设满足,利用零点存在定理证明关于的方程至少有两个解,证明至少存在两个不等的正数,同时使得函数满足性质和;(3)分别讨论,,时函数的零点的存在性,由此完成证明.【小问1详解】因为满足性质,所以对于任意的x,恒成立.又因为,所以,,,由可得,由可得,所以,.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论