山东省潍坊市青州实验初级中学2021-2022学年高三数学文联考试题含解析_第1页
山东省潍坊市青州实验初级中学2021-2022学年高三数学文联考试题含解析_第2页
山东省潍坊市青州实验初级中学2021-2022学年高三数学文联考试题含解析_第3页
山东省潍坊市青州实验初级中学2021-2022学年高三数学文联考试题含解析_第4页
山东省潍坊市青州实验初级中学2021-2022学年高三数学文联考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省潍坊市青州实验初级中学2021-2022学年高三数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数为R上周期为4的奇函数,,又,则(

)A

B

C

D

参考答案:B2.设x∈R,则“1<x<2”是“|x﹣2|<1”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件参考答案:A【考点】29:充要条件.【分析】求解:|x﹣2|<1,得出“1<x<2”,根据充分必要条件的定义判断即可.【解答】解:∵|x﹣2|<1,∴1<x<3,∵“1<x<2”∴根据充分必要条件的定义可得出:“1<x<2”是“|x﹣2|<1”的充分不必要条件.故选:A3.如图①,利用斜二测画法得到水平放置的△ABC的直观图,其中轴,轴.若,设△ABC的面积为S,的面积为,记S=kS',执行如图②的框图,则输出T的值

(A)12

(B)10

(C)9

(D)6参考答案:A4.已知、是夹角为的单位向量,若=+3,=2﹣,则向量在方向上的投影为()A. B. C. D.参考答案:B【考点】平面向量数量积的运算.【分析】由条件即可求出,而根据即可求出的值,而可得到在方向上的投影为,从而求出该投影的值.【解答】解:根据条件:===;===;∴在方向上的投影为:===.故选B.5.某加工厂用同种原材料生产出A、B两种产品,分别由此加工厂的甲、乙两个车间来生产,甲车间加工一箱原料需耗费工时10小时可加工出7千克A产品,每千克A产品获利40元。乙车间加工一箱原料需耗费工时6小时可加工出4千克B产品,每千克B产品获利50元。甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两个车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为(A)甲车间加工原料10箱,乙车间加工原料60箱

(B)甲车间加工原料15箱,乙车间加工原料55箱(C)甲车间加工原料18箱,乙车间加工原料50箱(D)甲车间加工原料40箱,乙车间加工原料30箱参考答案:B6.已知函数,若方程在区间内有个不等实根,则实数的取值范围是

或参考答案:7.已知函数的导函数图象如图所示,若为锐角三角形,则一定成立的是(

)A.

B.C. D.参考答案:A8.设为定义在上的奇函数,当时,(为常数),则(A)-3

(B)-1

(C)1

(D)-3参考答案:D9.函数f(x)、g(x)的图像如图:

则函数y=f(x)·g(x)的图像可能是:

)参考答案:A

10.对两条不相交的空间直线a和b,则()A.必定存在平面α,使得a?α,b?αB.必定存在平面α,使得a?α,b∥αC.必定存在直线c,使得a∥c,b∥cD.必定存在直线c,使得a∥c,b⊥c参考答案:B【考点】空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系;平面与平面之间的位置关系.【分析】根据空间直线的位置关系、直线与平面的位置关系和平面与平面的位置关系的性质与判定,对各个选项依次加以判别,即可得到B项是正确的,而A、C、D都存在反例而不正确.【解答】解:对于A,若两条直线a、b是异面直线时,则不存在平面α使得a?α且b?α成立,故A不正确;对于B,因为a、b不相交,所以a、b的位置关系是平行或异面:①当a、b平行时,显然存在平面α,使得a?α且b∥α成立;②当a、b异面时,设它们的公垂线为c,在a、b上的垂足分别为A、B.则经过A、B且与c垂直的两个平面互相平行,设过A的平面为α,过B的平面为β,则α∥β,且a、b分别在α、β内,此时存在平面α,使得a?α且b∥α成立.故B正确;对于C,若两条直线a、b是异面直线时,则不存存在直线c,使得a∥c且b∥c成立,故C不正确;对于D,当a、b所成的角不是直角时,不存在直线c,使得a∥c且b⊥c成立,故D不正确.综上所述,只有B项正确.故选:B二、填空题:本大题共7小题,每小题4分,共28分11.如图,A是两条平行直线之间的一个定点,且A到的距离分别为,设的另两个顶点B,C分别在上运动,且,,则以下结论正确的序号是____________.①是直角三角形;②的最大值为;③;④设的周长为,的周长为,则.参考答案:①②④由正弦定理得:,则,又,,所以①正确;设,则,,,,则,,所以②正确;,所以③错误;,令,(当时取等),所以④正确。12.若方程表示焦点在x轴上的椭圆,则实数a的取值范围是_____.参考答案:或.【分析】方程表示焦点在轴上的椭圆,可以得到不等式,解这个不等式,求出实数的取值范围.【详解】解:∵方程表示焦点在轴上的椭圆,∴,∴或.故答案为:或.【点睛】本题考查了焦点在横轴上椭圆方程的识别,考查了解不等式的能力.13.设m,n,p∈R,且,,则p的最大值和最小值的差为__

__.参考答案:略14.已知椭圆的上下两个焦点分别为,点为该椭圆上一点,若,为方程的两根,则=____________.

.参考答案:-3,15.函数的图象在点处的切线与轴的交点的横坐标为,其中,,则

.参考答案:-616.已知等比数列的前项和为,且,则数列的公比为__________.参考答案:略17.如图,函数y=x2与y=kx(k>0)的图象所围成的阴影部分的面积为,则k=.参考答案:3【考点】定积分.【专题】计算题.【分析】先联立两个解析式解方程,得到积分区间,然后利用积分的方法表示出阴影部分面积让其等于,列出关于k的方程,求出解即可得到k的值.【解答】解:直线方程与抛物线方程联立解得x=0,x=k,得到积分区间为[0,k],由题意得:∫0k(kx﹣x2)dx=(x2﹣x3)|0k=﹣==,即k3=27,解得k=3.故答案为:3【点评】此题是一道基础题,要求学生会利用积分求平面图形的面积.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)如图所示,已知椭圆C1和抛物线C2有公共焦点,C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线与抛物线C2分别相交于A、B两点.(Ⅰ)写出抛物线C2的标准方程;

(Ⅱ)求证:以AB为直径的圆过原点;(Ⅲ)若坐标原点关于直线的对称点在抛物线C2上,直线与椭圆C1有公共点,求椭圆C1的长轴长的最小值.

参考答案:(1)设抛物线的标准方程为由得,

;

…3分(2)可设,联立得,设,即以为直径的圆过原点;

………………7分(3)设,则得

…………10分设椭圆,与直线联立可得:∴长轴长最小值为

………………12分19.已知函数f(x)=+ax,x>1.(Ⅰ)若f(x)在(1,+∞)上单调递减,求实数a的取值范围;(Ⅱ)若a=2,求函数f(x)的极小值;(Ⅲ)若存在实数a使f(x)在区间()(n∈N*,且n>1)上有两个不同的极值点,求n的最小值.参考答案:考点:利用导数研究函数的极值;利用导数研究函数的单调性.专题:导数的综合应用.分析:(Ⅰ)求出函数的导数,利用f′(x)≤0在x∈(1,+∞)上恒成立,得到a的表达式,利用函数的最小值求出a的范围.(Ⅱ)通过a=2,化简函数的解析式,求出函数的导数,利用导数的符号,判断函数的单调性,求出极小值.(Ⅲ)判断aln2x+lnx﹣1=0在上有两个不等实根,法一:构造函数,推出,求出n的最小值.法二:利用,推出a的表达式,列出然后求解n的最小值.解答:(本小题满分13分)解:(Ⅰ),由题意可得f′(x)≤0在x∈(1,+∞)上恒成立;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)∵x∈(1,+∞),∴lnx∈(0,+∞),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)∴时函数t=的最小值为,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)

当a=2时,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)令f′(x)=0得2ln2x+lnx﹣1=0,解得或lnx=﹣1(舍),即﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)当时,f′(x)<0,当时,f′(x)>0∴f(x)的极小值为﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)(Ⅲ)原题等价于f′(x)=0在,且n>1)上有两个不等的实数根;由题意可知﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)即aln2x+lnx﹣1=0在上有两个不等实根.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)法一:令,g(u)=au2+u﹣1∵g(0)=﹣1<0,根据图象可知:,整理得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)即,解得n>2,∴n的最小值为3.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)法二:令,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)由题意可知解得解得n>2,∴n的最小值为3.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)点评:本题考查函数的单调性以及函数的极值,构造法的应用,考查转化思想以及计算能力.20.某年级教师年龄数据如下表:年龄(岁)人数(人)221282293305314323402合计20

(1)求这20名教师年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名教师年龄的茎叶图;(3)现在要在年龄为29岁和31岁的教师中选2位教师参加学校有关会议,求所选的2位教师年龄不全相同的概率.参考答案:(1)30,18;(2)见解析;(3)试题分析:(1)由所给的年龄数据可得这20名教师年龄的众数为30,极差为18.(2)结合所给的数据绘制茎叶图即可;(3)由题意可知,其中任选2名教师共有21种选法,所选的2位教师年龄不全相同的选法共有12种,结合古典概型计算公式可得所求概率值为.试题解析:(1)年龄为30岁的教师人数为5,频率最高,故这20名教师年龄的众数为30,极差为最大值与最小值的差,即40-22=18.(2)(3)设事件“所选的2位教师年龄不全相同”为事件A.年龄为29,31岁的教师共有7名,从其中任选2名教师共有=21种选法,3名年龄为29岁的教师中任选2名有3种选法,4名年龄为31岁的教师中任选2名有6种选法,所以所选的2位教师年龄不全相同的选法共有21-9=12种,所以P(A)==.21.如图:在△ABC中,D为AB边上一点,DA=DC,已知∠B=,BC=3(1)若△BCD为锐角三角形,DC=,求角A的大小;(2)若△BCD的面积为,求边AB的长.参考答案:【考点】余弦定理;正弦定理.【分析】(1)由已知及正弦定理可求,结合△BCD为锐角三角形,可求∠CDB,进而可求∠ADC的值,又DA=DC,利用等腰三角形的性质即可得解∠A的值.(2)利用三角形面积公式可求BD的值,利用余弦定理可求得CD的值,进而可求AB=CD+BD的值.【解答】(本题满分为12分)解:(1)因为:在△BCD中,由正弦定理得,所以:,又因为:△BCD为锐角三角形,所以:∠CDB=60°,所以:∠ADC=120°,DA=DC,所以:∠A=∠ACD=30°,∠A=30°.…(2)因为:,所以:,所以:,在△BCD中由余弦定理得:CD2=BD2+BC2﹣2BD×BCcos∠B=2+9﹣6=5,所以:,所以:.…22.已知函数f(x)=|2x﹣1|+|2x+1|.(Ⅰ)若不等式f(x)≥a2﹣2a﹣1恒成立,求实数a的取值范围;(Ⅱ)设m>0,n>0且m+n=1,求证:.参考答案:【考点】不等式的证明;绝对值不等式的解法.【分析】(Ⅰ)求出f(x)的最小值,不等式f(x)≥a2﹣2a﹣1恒成立,可得a2﹣2a﹣1≤2,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论