北京市朝阳外国语2022年高一上数学期末预测试题含解析_第1页
北京市朝阳外国语2022年高一上数学期末预测试题含解析_第2页
北京市朝阳外国语2022年高一上数学期末预测试题含解析_第3页
北京市朝阳外国语2022年高一上数学期末预测试题含解析_第4页
北京市朝阳外国语2022年高一上数学期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,共60分)1.设、是两个非零向量,下列结论一定成立的是()A.若,则B.若,则存在实数,使得C若,则D.若存在实数,使得,则|2.某组合体的三视图如下,则它的体积是A. B.C. D.3.设,则等于A. B.C. D.4.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:血液中酒精含量达到的驾驶员即为酒后驾车,及以上认定为醉酒驾车.假设某驾驶员一天晚上8点喝了一定量的酒后,其血液中的酒精含量上升到,如果在停止喝酒后,他血液中酒精含量会以每小时10%的速度减少,则他次日上午最早几点(结果取整数)开车才不构成酒后驾车?(参考数据:)()A.6 B.7C.8 D.95.已知是定义域为的单调函数,且对任意实数,都有,则的值为()A.0 B.C. D.16.将函数图象上的点向右平移个单位长度后得到点,若点仍在函数的图象上,则的最小值为()A. B.C. D.7.如图,一个直三棱柱形容器中盛有水,且侧棱.若侧面水平放置时,液面恰好过的中点,当底面ABC水平放置时,液面高为()A.6 B.7C.2 D.48.若则一定有A. B.C. D.9.已知幂函数的图象过(4,2)点,则A. B.C. D.10.已知,,,则下列判断正确的是()A. B.C. D.11.已知向量,且,则的值为()A.1 B.2C. D.312.函数lgx=3,则x=()A1000 B.100C.310 D.30二、填空题(本大题共4小题,共20分)13.函数的单调递减区间为__14.已知幂函数y=xα的图象经过点2,8,那么15.已知函数的图象恒过点P,若点P在角的终边上,则_________16.给出下列命题:①函数是偶函数;②方程是函数的图象的一条对称轴方程;③在锐角中,;④函数的最小正周期为;⑤函数的对称中心是,,其中正确命题的序号是________.三、解答题(本大题共6小题,共70分)17.如图,在四棱锥中,底面为正方形,底面,该四棱锥的正视图和侧视图均为腰长为6的等腰直角三角形.(1)画出相应的俯视图,并求出该俯视图的面积;(2)求证:;(3)求四棱锥外接球的直径.18.定义在R上的函数对任意的都有,且,当时.(1)求的值,并证明是R上的增函数;(2)设,(i)判断的单调性(不需要证明)(ii)解关于x的不等式.19.对于等式,如果将视为自变量,视为常数,为关于(即)的函数,记为,那么,是幂函数;如果将视为常数,视为自变量,为关于(即)的函数,记为,那么,是指数函数;如果将视为常数,视为自变量为关于(即)的函数,记为,那么,是对数函数.事实上,由这个等式还可以得到更多的函数模型.例如,如果为常数(为自然对数的底数),将视为自变量,则为的函数,记为(1)试将表示成的函数;(2)函数的性质通常指函数的定义域、值域、单调性、奇偶性等,请根据你学习到的函数知识直接写出该函数的性质,不必证明.并尝试在所给坐标系中画出函数的图象20.如图,在三棱锥中,.(1)画出二面角的平面角,并求它的度数;(2)求三棱锥的体积.21.(1)计算(2)已知,求的值22.设函数,.用表示,中的较大者,记为.已知关于的不等式的解集为(1)求实数,的值,并写出的解析式;

参考答案一、选择题(本大题共12小题,共60分)1、B【解析】利用向量共线定理、垂直数量积为0来综合判断.【详解】A:当、方向相反且时,就可成立,A错误;B:若,则、方向相反,故存在实数,使得,B正确;C:若,则说明,不一定有,C错误;D:若存在实数,使得,则,D错误.故选:B2、A【解析】,故选A考点:1、三视图;2、体积【方法点晴】本题主要考查三视图和锥体的体积,计算量较大,属于中等题型.应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称.此外本题应注意掌握锥体和柱体的体积公式3、D【解析】由题意结合指数对数互化确定的值即可.【详解】由题意可得:,则.本题选择D选项.【点睛】本题主要考查对数与指数的互化,对数的运算性质等知识,意在考查学生的转化能力和计算求解能力.4、B【解析】设经过个小时才能驾驶,则,再根据指数函数的性质及对数的运算计算可得.【详解】解:设经过个小时才能驾驶,则,即,由于在定义域上单调递减,,∴他至少经过11小时才能驾驶.则他次日上午最早7点开车才不构成酒后驾车故选:B5、B【解析】令,可以求得,即可求出解析式,进而求出函数值.【详解】根据题意,令,为常数,可得,且,所以时有,将代入,等式成立,所以是的一个解,因为随的增大而增大,所以可以判断为增函数,所以可知函数有唯一解,又因为,所以,即,所以.故选:B.【点睛】本题主要考查函数单调性和函数的表示方法,属于中档题.6、B【解析】作出函数和直线图象,根据图象,利用数形结合方法可以得到的最小值.【详解】画出函数和直线的图象如图所示,是它们的三个相邻的交点.由图可知,当在点,在点时,的值最小,易知的横坐标分别为,所以的最小值为,故选:B.7、A【解析】根据题意,当侧面AA1B1B水平放置时,水的形状为四棱柱形,由已知条件求出水的体积;当底面ABC水平放置时,水的形状为三棱柱形,设水面高为h,故水的体积可以用三角形的面积直接表示出,计算即可得答案【详解】根据题意,当侧面AA1B1B水平放置时,水的形状为四棱柱形,底面是梯形,设△ABC的面积为S,则S梯形=S,水的体积V水=S×AA1=6S,当底面ABC水平放置时,水的形状为三棱柱形,设水面高为h,则有V水=Sh=6S,故h=6故选A【点睛】本题考点是棱柱的体积计算,考查用体积公式来求高,考查转化思想以及计算能力,属于基础题8、D【解析】本题主要考查不等关系.已知,所以,所以,故.故选9、D【解析】设函数式为,代入点(4,2)得考点:幂函数10、C【解析】对数函数的单调性可比较、与的大小关系,由此可得出结论.【详解】,即.故选:C.11、A【解析】由,转化为,结合数量积的坐标运算得出,然后将所求代数式化为,并在分子分母上同时除以,利用弦化切的思想求解【详解】由题意可得,即∴,故选A【点睛】本题考查垂直向量的坐标表示以及同角三角函数的基本关系,考查弦化切思想的应用,一般而言,弦化切思想应用于以下两方面:(1)弦的分式齐次式:当分式是关于角弦的次分式齐次式,分子分母同时除以,可以将分式由弦化为切;(2)弦的二次整式或二倍角的一次整式:先化为角的二次整式,然后除以化为弦的二次分式齐次式,并在分子分母中同时除以可以实现弦化切12、A【解析】由lgx=3,可得直接计算出结果.【详解】由lgx=3,有:则,故选:A【点睛】本题考查对数的定义,属于基础题.二、填空题(本大题共4小题,共20分)13、【解析】由根式内部的代数式大于等于0,求得原函数的定义域,再求出内层函数的减区间,即可得到原函数的减区间【详解】由,得或,令,该函数在上单调递减,而y=是定义域内的增函数,∴函数的单调递减区间为故答案为:14、3【解析】根据幂函数y=xα的图象经过点2,8,由2【详解】因为幂函数y=xα的图象经过点所以2α解得α=3,故答案:315、【解析】由对数函数的性质可得点的坐标,由三角函数的定义求得与的值,再由正弦的二倍角公式即可求解.【详解】易知恒过点,即,因为点在角的终边上,所以,所以,,所以,故答案为:.16、①②③【解析】由诱导公式化简得函数,判断①正确;求出函数的图象的对称轴(),当时,,判断②正确;在锐角中,由化简得到,判断③正确;直接求出函数的最小正周期为,判断④错误;直接求出函数的对称中心是,判断⑤错误.【详解】①因为函数,所以函数是偶函数,故①正确;②因为函数,所以函数图象的对称轴(),即(),当时,,故②正确;③在锐角中,,即,所以,故③正确;④函数的最小正周期为,故④错误;⑤令,解得,所以函数的对称中心是,故⑤错误.故答案为:①②③【点睛】本题考查三角函数的图象与性质、诱导公式与三角恒等变换,是中档题.三、解答题(本大题共6小题,共70分)17、(1)见解析;(2)见解析;(3).【解析】(1)该四棱锥的俯视图为边长为6cm的正方形(内含对角线),如图,即可得出面积(2)设法证明面即可;(3)由侧视图可求得即为四棱锥外接球的直径试题解析:(1)该四棱锥的俯视图为(内含对角线),边长为6的正方形,如图,其面积为36.(2)证明:因为底面,底面,所以,由底面为正方形,所以,,面,面,所以面,面,所以(3)由侧视图可求得由正视图可知,所以在Rt△中,.所以四棱锥外接球直径为.18、(1),证明见解析(2)(i)在上是单减单减函数(ii)【解析】(1)令可得,再可得答案,设,则,所以可证明单调性;(2)(i)根据复合函数的单调性法则可得答案;(ii)由题意可得,,结合函数的单调性可得的解为,则原不等式等价于,从而可得答案.【小问1详解】在中,令可得,则令可得,可得任取且,则,所以则即,所以是R上的增函数【小问2详解】(i)由在上是单减单减函数,又单调递增由复合函数的单调性规律可得在上是单减单减函数.(ii)由,所以的解为从而不等式的解为,即即,整理可得即,解得或,所以或所以原不等式的解集为19、(1),(,)(2)答案见解析【解析】(1)结合对数运算的知识求得.(2)根据的解析式写出的性质,并画出图象.【小问1详解】依题意因为,,两边取以为底的对数得,所以将y表示为x的函数,则,(,),即,(,);【小问2详解】函数性质:函数的定义域为,函数值域,函数是非奇非偶函数,函数的在上单调递减,在上单调递减函数的图象:20、⑴⑵.【解析】(1)取中点,连接、,是二面角的平面角,进而求出此角度数即可;(2)利用等积法或割补法求体积.试题解析:⑴取中点,连接、,,,,且平面,平面,是二面角平面角.在直角三角形中,在直角三角形中,是等边三角形,⑵解法1:,又平面,平面平面,且平面平面在平面内作于,则平面,即是三棱锥的高.在等边中,,三棱锥的体积.解法2:平面在等边中,的面积,三棱锥的体积.21、(1);(2)3.【解析】(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论