版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
全等三角形复习学习目标:(1)回顾全等三角形的概念、性质、判定方法,利用全等三角形的性质和判定进行计算和证明。(2)让学生经历观察、猜想、证明、归纳的过程,发展学生合情合理的推理能力,渗透转化的数学思想。(3)引导学生共同参与,激发数学求知欲,并养成良好的数学学习惯。学习重难点:重点:利用全等三角形的性质和判定进行计算和证明。难点:全等三角形的构造与证明。全等三角形三角形全等的判定性质全等三角形知识结构图SSSSASASAAAS角的平分线判定全等三角形的定义、性质直角三角形特有的判定方法HL一.全等三角形:什么是全等三角形?一个三角形经过哪些变化可以得到它的全等形?全等三角形有哪些性质?能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。(1):全等三角形的对应边相等、对应角相等。(2):全等三角形的周长相等、面积相等。(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。知识回顾全等三角形的判定方法一般三角形
全等的条件:1.SSS;2.SAS;3.ASA;4.AAS.直角三角形全等特有的条件:HL.包括直角三角形不包括其它形状的三角形解题中常用的4种方法回顾知识点:边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)课堂练习:已知:如图∠B=∠DEF,BC=EF,补充条件求证:ΔABC≌ΔDEF∠ACB=∠DFEAB=DEAB=DE、AC=DFABCDEF==DEFABC∠A=∠D(1)若要以“SAS”为依据,还缺条件_____;(2)若要以“ASA”为依据,还缺条件____;
(4)若要以“SSS”为依据,还缺条件_____;(3)若要以“AAS”为依据,还缺条件_____;
(5)若∠B=∠DEF=90°要以“HL”为依据,还缺条件_____AC=DF方法指引证明两个三角形全等的基本思路:(1):已知两边----
找第三边(SSS)找夹角(SAS)(2):已知一边一角---已知一边和它的邻角找是否有直角(HL)已知一边和它的对角找这边的另一个邻角(ASA)找这个角的另一个边(SAS)找这边的对角(AAS)找一角(AAS)已知角是直角,找一边(HL)(3):已知两角---找两角的夹边(ASA)找夹边外的任意边(AAS)练习角的内部到角的两边的距离相等的点在角的平分线上。用法:
∵
QD⊥OA,QE⊥OB,QD=QE.∴点Q在∠AOB的平分线上.角的平分线上的点到角的两边的距离相等.用法:∵
QD⊥OA,QE⊥OB,点Q在∠AOB的平分线上∴QD=QE二.角的平分线:1.角平分线的性质:2.角平分线的判定:
7个金蛋你可以任选一个,如果出现“恭喜你”的字样,你将直接过关;否则将有考验你的数学问题,答对才能过关。同学们,大家好!快乐之旅1234567如图,△ABC≌△DEF,DE=4,AE=1,则BE的长是()A.5 B.4 C.3 D.23我能行C7我能行AC=AE∠C=∠E∠B=∠D如图,在△ABC和△BAD中,BC=AD,请你再补充一个条件,使△ABC≌△BAD.你补充的条件是
.1我能行AC=BD∠ABC=∠BAD(答案不唯一)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是拿()去配.6我能行③我能行4如图,给出下列四组条件①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E其中能使△ABC≌△DEF的是
.①②③恭喜你,过关了!小结5恭喜你,过关了!2如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?4321EDCBA解:AC=AD理由:在△EBC和△EBD中∠1=∠2∠3=∠4EB=EB∴△EBC≌△EBD(AAS)∴BC=BD3题变式:在△ABC和△ABD中AB=AB
∠1=∠2BC=BD∴△ABC≌△ABD(SAS)
∴AC=AD
如图已知△ABC,AD是BC边上的中线,分别以AB边、AC边为直角边各向外作等腰直角三角形.求证:EF=2AD6题变式:G证明:延长AD到G,使DG=AD,连接BG∵AD是BC边上的中线,∴BD=CD在△ACD和△GBD中,
∴△ACD≌△GBD(SAS)∴AC=BG,∠CAD=∠G∴AC∥BG,∴∠BAC+∠ABG=180°∵△ABE与△ACF为等腰直角三角形∴AB=AE,AC=AF,∠BAE=∠CAF=90°∴∠EAF+∠BAC=180°∴∠ABG=∠EAF在△ABG和△EAF中,∴△ABG≌△EAF(SAS)
∴AG=EF∵AG=2AD∴EF=2AD要证明两条线段的和与一条线段相等时常用的两种方法:1、可在长线段上截取与两条线段中一条相等的一段,然后证明剩余的线段与另一条线段相等。(截长)2、把一个三角形移到另一位置,使两线段补成一条线段,再证明它与长线段相等。(补短)规律方法总结在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,AD⊥MN于点D,BE⊥MN于点E,(1)当直线MN旋转到图(1)的位置时,猜想线段AD,BE,DE的数量关系,并证明你的猜想图(1)拓展训练在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,AD⊥MN于点D,BE⊥MN于点E,(2)当直线MN旋转到图(2)的位置时,猜想线段AD,BE,DE的数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年工程保修合同
- 2026年人员外包合同
- 2025年机器人技术与产业应用项目可行性研究报告
- 2025年个性化定制产品市场可行性研究报告
- 2025年多功能综合文体中心建设项目可行性研究报告
- 考试阅人员协议书
- 中职调解协议书
- 海思科医药协议书
- 交流合作协议书
- 论政府预算信息公开诉讼制度
- 8m深基坑土方开挖施工方案
- 2025中央广播电视总台招聘144人笔试历年题库附答案解析
- 2026年瓦工职业技能鉴定考试题库及答案
- 2025年云南省人民检察院聘用制书记员招聘(22人)笔试考试参考题库及答案解析
- 胃肠外科围手术期护理要点
- 竣工资料归档与管理流程
- 购车合伙协议书模板
- 二手摩托车买卖合同范本
- 2026年山西省财政税务专科学校单招职业倾向性测试题库附答案
- 2025年阿里辅警协警招聘考试备考题库及答案1套
- 黄宝康药用植物学课件
评论
0/150
提交评论