方程地根与函数地零点教学教案_第1页
方程地根与函数地零点教学教案_第2页
方程地根与函数地零点教学教案_第3页
方程地根与函数地零点教学教案_第4页
方程地根与函数地零点教学教案_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

方程的根与函数的零点引例1:判断下列方程是否有根,有几个实数根?(1)(2)(3)

函数的图象与x轴交点方程x2-2x+1=0x2-2x+3=0y=x2-2x-3y=x2-2x+1函数函数的图象方程的实数根x1=-1,x2=3x1=x2=1无实数根(-1,0)、(3,0)(1,0)无交点x2-2x-3=0xy0-132112-1-2-3-4..........xy0-132112543.....yx0-12112y=x2-2x+3知识探究(一):方程的根与函数的零点方程ax2+bx+c=0(a>0)的根函数y=ax2+bx+c(a>0)的图象判别式△=b2-4ac△>0△=0△<0函数的图象与x轴的交点有两个相等的实数根x1=x2没有实数根xyx1x20xy0x1xy0(x1,0),(x2,0)(x1,0)没有交点两个不相等的实数根x1、x2

对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点。函数零点的定义:注意:零点指的是一个实数零点是一个点吗?函数y=f(x)有零点方程f(x)=0有实数根(代数法)函数y=f(x)的图象与x轴有交点.(几何法)等价关系求函数零点的步骤:

(1)令f(x)=0;(2)解方程f(x)=0;

(3)写出零点例1:求函数的零点。练习1.求下列函数的零点:(1);(2)

.练习2.已知函数的定义域为R的奇函数,且在有一个零点,则的零点个数为_____课堂练习1xy0abab问题6:如果将定义域改为区间[a,b]观察图像说一说零点个数的情况,有什么发现?abxy0结论abxy0函数的图像在闭区间[a,b]上连续不断。结论零点存在定理:结论理解思考1;若只给条件f(a)·

f(b)<0能否保证在(a,b)有零点?结论理解思考2:零点唯一吗?思考3:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,那么当f(a)·f(b)>0时,函数y=f(x)在区间(a,b)内一定没有零点吗?思考4:若在区间(a,b)有零点时,一定有f(a)·f(b)

<0吗?在有零点在上连续零点的存在性定理例题x123456789f(x)-4-1.30691.09863.38635.60947.79189.945912.079414.1972例1求函数f(x)=㏑x+2x-6

的零点的个数。解:先用计算器或计算机作出x、f(x)的对应值表和图像:x0-2-4-6105y241086121487643219唯一在上单调在有零点在上连续零点的存在性定理课堂练习3:2.函数y=f(x)在区间[a,b]上的图象是连续不断的曲线,且f(a)f(b)<0,则函数y=f(x)在区间(a,b)内()

A.至少有一个零点

B.至多有一个零点

C.只有一个零点

D.有两个零点课堂练习3:2.函数y=f(x)在区间[a,b]上的图象是连续不断的曲线,且f(a)f(b)<0,则函数y=f(x)在区间(a,b)内(A)

A.至少有一个零点

B.至多有一个零点

C.只有一个零点

D.有两个零点课堂练习3:课堂小结1.知识方面:零点的概念,零点与方程的根、函数图像与x轴的交点关系,零点存在性定理;2.数学思想方面:函数与方程的相互转化,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论