版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新人教版八年级数学教案教学难点是敏捷应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使同学在理解的基础上敏捷地将分式变形。一起看看新人教版八班级数学教案!欢迎查阅!
新人教版八班级数学教案1
一、教学目标
1.理解分式的基本性质.
2.会用分式的基本性质将分式变形.
二、重点、难点
1.重点:理解分式的基本性质.
2.难点:敏捷应用分式的基本性质将分式变形.
3.认知难点与突破方法
教学难点是敏捷应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使同学在理解的基础上敏捷地将分式变形.
三、例、习题的意图分析
1.P7的例2是使同学观看等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.
2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得留意的是:约分是要找准分子和分母的公因式,最终的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及全部因式的次幂的积,作为最简公分母.
老师要讲清方法,还要准时地订正同学做题时消失的错误,使同学在做提示加深对相应概念及方法的理解.
3.P11习题16.1的第5题是:不转变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,转变其中任何两个,分式的值不变.
“不转变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.
四、课堂引入
1.请同学们考虑:与相等吗?与相等吗?为什么?
2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?
3.提问分数的基本性质,让同学类比猜想出分式的基本性质.
五、例题讲解
P7例2.填空:
[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.
P11例3.约分:
[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.
P11例4.通分:
[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及全部因式的次幂的积,作为最简公分母.
(补充)例5.不转变分式的值,使下列分式的分子和分母都不含“-”号.
,,,,。
[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时转变,分式的值不变.
解:=,=,=,=,=。
六、随堂练习
1.填空:
(1)=(2)=
(3)=(4)=
2.约分:
(1)(2)(3)(4)
3.通分:
(1)和(2)和
(3)和(4)和
4.不转变分式的值,使下列分式的分子和分母都不含“-”号.
(1)(2)(3)(4)
七、课后练习
1.推断下列约分是否正确:
(1)=(2)=
(3)=0
2.通分:
(1)和(2)和
3.不转变分式的值,使分子第一项系数为正,分式本身不带“-”号.
(1)(2)
八、答案:
六、1.(1)2x(2)4b(3)bn+n(4)x+y
2.(1)(2)(3)(4)-2(x-y)2
3.通分:
(1)=,=
(2)=,=
(3)==
(4)==
4.(1)(2)(3)(4)
新人教版八班级数学教案2
一、教学目标:娴熟地进行分式乘除法的混合运算.
二、重点、难点
1.重点:娴熟地进行分式乘除法的混合运算.
2.难点:娴熟地进行分式乘除法的混合运算.
3.认知难点与突破方法:
紧紧抓住分式乘除法的混合运算先统一成为乘法运算这一点,然后利用上节课分式乘法运算的基础,达到娴熟地进行分式乘除法的混合运算的目的.课堂练习以同学自己争论为主,老师可组织同学对所做的题目作自我评价,关键是点拨运算符号问题、变号法则.
三、例、习题的意图分析
1.P17页例4是分式乘除法的混合运算.分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最终进行约分,留意最终的结果要是最简分式或整式.
教材P17例4只把运算统一乘法,而没有把25x2-9分解因式,就得出了最终的结果,老师在见解是不要跳步太快,以免学习有困难的同学理解不了,造成新的疑点.
2,P17页例4中没有涉及到符号问题,可运算符号问题、变号法则是同学学习中重点,也是难点,故补充例题,突破符号问题.
四、课堂引入
计算
(1)(2)
五、例题讲解
(P17)例4.计算
[分析]是分式乘除法的混合运算.分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最终进行约分,留意最终的计算结果要是最简的.
(补充)例.计算
(1)
=(先把除法统一成乘法运算)
=(推断运算的符号)
=(约分到最简分式)
(2)
=(先把除法统一成乘法运算)
=(分子、分母中的多项式分解因式)
=
=
六、随堂练习
计算
(1)(2)
(3)(4)
七、课后练习
计算
(1)(2)
(3)(4)
八、答案:
六.(1)(2)(3)(4)-y
七.(1)(2)(3)(4)
新人教版八班级数学教案3
一、教学目标:理解分式乘方的运算法则,娴熟地进行分式乘方的运算.
二、重点、难点
1.重点:娴熟地进行分式乘方的运算.
2.难点:娴熟地进行分式乘、除、乘方的混合运算.
3.认知难点与突破方法
讲解分式乘方的运算法则之前,依据乘方的意义和分式乘法的法则,计算===,===,……
顺其自然地推导可得:
===,即=.(n为正整数)
归纳出分式乘方的法则:分式乘方要把分子、分母分别乘方.
三、例、习题的意图分析
1.P17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判
断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对同学强调运算挨次:先做乘方,再做乘除..
2.教材P17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量明显少了些,故老师应作适当的补充练习.同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好.
分式的乘除与乘方的混合运算是同学学习中重点,也是难点,故补充例题,强调运算挨次,不要盲目地跳步计算,提高正确率,突破这个难点.
四、课堂引入
计算下列各题:
(1)==()(2)==()
(3)==()
[提问]由以上计算的结果你能推出(n为正整数)的结果吗?
五、例题讲解
(P17)例5.计算
[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先推断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对同学强调运算挨次:先做乘方,再做乘除.
六、随堂练习
1.推断下列各式是否成立,并改正.
(1)=(2)=
(3)=(4)=
2.计算
(1)(2)(3)
(4)5)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流行业2021流感防控工作方案
- 蔬菜大棚施工预算方案
- 私立幼儿园教师职称评审方案
- 城市交通拥堵治理方案
- 制造业产品售后服务优化方案
- 新闻报道公正性提升方案
- 提升企业员工专业技能的培训方案
- 物业管理信访维稳工作方案
- 市值合作协议书(2篇)
- 餐饮行业新冠肺炎疫情防控应急预案
- 上海市大学生安全教育(2022级)学习通课后章节答案期末考试题库2023年
- 苏轼生平及创作整理
- 柴油发电机组应急预案
- 语文《猜猜他是谁》教案
- 绘本:让谁先吃好呢
- 宽容待人正确交往中小学生教育主题班会
- 移动通信网络运行维护管理规程
- 龙头股战法优质获奖课件
- 小班幼儿语言活动教案100篇
- 中国青瓷艺术鉴赏智慧树知到答案章节测试2023年丽水学院
- 中广国际总公司-CR2010卫星接收解码器
评论
0/150
提交评论