版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年广东省珠海三中数学高三上期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,,若,对任意恒有,在区间上有且只有一个使,则的最大值为()A. B. C. D.2.已知复数满足,则=()A. B.C. D.3.一个算法的程序框图如图所示,若该程序输出的结果是,则判断框中应填入的条件是()A. B. C. D.4.已知函数满足,且,则不等式的解集为()A. B. C. D.5.已知函数的部分图象如图所示,则()A. B. C. D.6.已知函数的最小正周期为,为了得到函数的图象,只要将的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度7.已知甲盒子中有个红球,个蓝球,乙盒子中有个红球,个蓝球,同时从甲乙两个盒子中取出个球进行交换,(a)交换后,从甲盒子中取1个球是红球的概率记为.(b)交换后,乙盒子中含有红球的个数记为.则()A. B.C. D.8.已知为等比数列,,,则()A.9 B.-9 C. D.9.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},则A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}10.若sin(α+3π2A.-12 B.-1311.将函数的图象先向右平移个单位长度,在把所得函数图象的横坐标变为原来的倍,纵坐标不变,得到函数的图象,若函数在上没有零点,则的取值范围是()A. B.C. D.12.已知复数z满足(i为虚数单位),则z的虚部为()A. B. C.1 D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,的外接圆半径为,为边上一点,且,,则的面积为______.14.已知点是双曲线渐近线上的一点,则双曲线的离心率为_______15.等差数列(公差不为0),其中,,成等比数列,则这个等比数列的公比为_____.16.能说明“在数列中,若对于任意的,,则为递增数列”为假命题的一个等差数列是______.(写出数列的通项公式)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某工厂为提高生产效率,需引进一条新的生产线投入生产,现有两条生产线可供选择,生产线①:有A,B两道独立运行的生产工序,且两道工序出现故障的概率依次是0.02,0.03.若两道工序都没有出现故障,则生产成本为15万元;若A工序出现故障,则生产成本增加2万元;若B工序出现故障,则生产成本增加3万元;若A,B两道工序都出现故障,则生产成本增加5万元.生产线②:有a,b两道独立运行的生产工序,且两道工序出现故障的概率依次是0.04,0.01.若两道工序都没有出现故障,则生产成本为14万元;若a工序出现故障,则生产成本增加8万元;若b工序出现故障,则生产成本增加5万元;若a,b两道工序都出现故障,则生产成本增加13万元.(1)若选择生产线①,求生产成本恰好为18万元的概率;(2)为最大限度节约生产成本,你会给工厂建议选择哪条生产线?请说明理由.18.(12分)已知函数.(1)求不等式的解集;(2)若正数、满足,求证:.19.(12分)已知函数.(1)解不等式;(2)记函数的最小值为,正实数、满足,求证:.20.(12分)已知椭圆过点且椭圆的左、右焦点与短轴的端点构成的四边形的面积为.(1)求椭圆C的标准方程:(2)设A是椭圆的左顶点,过右焦点F的直线,与椭圆交于P,Q,直线AP,AQ与直线交于M,N,线段MN的中点为E.①求证:;②记,,的面积分别为、、,求证:为定值.21.(12分)记函数的最小值为.(1)求的值;(2)若正数,,满足,证明:.22.(10分)已知,,分别是三个内角,,的对边,.(1)求;(2)若,,求,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据的零点和最值点列方程组,求得的表达式(用表示),根据在上有且只有一个最大值,求得的取值范围,求得对应的取值范围,由为整数对的取值进行验证,由此求得的最大值.【详解】由题意知,则其中,.又在上有且只有一个最大值,所以,得,即,所以,又,因此.①当时,,此时取可使成立,当时,,所以当或时,都成立,舍去;②当时,,此时取可使成立,当时,,所以当或时,都成立,舍去;③当时,,此时取可使成立,当时,,所以当时,成立;综上所得的最大值为.故选:C【点睛】本小题主要考查三角函数的零点和最值,考查三角函数的性质,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.2、B【解析】
利用复数的代数运算法则化简即可得到结论.【详解】由,得,所以,.故选:B.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,属于基础题.3、D【解析】
首先判断循环结构类型,得到判断框内的语句性质,然后对循环体进行分析,找出循环规律,判断输出结果与循环次数以及的关系,最终得出选项.【详解】经判断此循环为“直到型”结构,判断框为跳出循环的语句,第一次循环:;第二次循环:;第三次循环:,此时退出循环,根据判断框内为跳出循环的语句,,故选D.【点睛】题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.4、B【解析】
构造函数,利用导数研究函数的单调性,即可得到结论.【详解】设,则函数的导数,,,即函数为减函数,,,则不等式等价为,则不等式的解集为,即的解为,,由得或,解得或,故不等式的解集为.故选:.【点睛】本题主要考查利用导数研究函数单调性,根据函数的单调性解不等式,考查学生分析问题解决问题的能力,是难题.5、A【解析】
先利用最高点纵坐标求出A,再根据求出周期,再将代入求出φ的值.最后将代入解析式即可.【详解】由图象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),将代入得φ)=1,∴φ,结合0<φ,∴φ.∴.∴sin.故选:A.【点睛】本题考查三角函数的据图求式问题以及三角函数的公式变换.据图求式问题要注意结合五点法作图求解.属于中档题.6、A【解析】
由的最小正周期是,得,即,因此它的图象向左平移个单位可得到的图象.故选A.考点:函数的图象与性质.【名师点睛】三角函数图象变换方法:7、A【解析】分析:首先需要去分析交换后甲盒中的红球的个数,对应的事件有哪些结果,从而得到对应的概率的大小,再者就是对随机变量的值要分清,对应的概率要算对,利用公式求得其期望.详解:根据题意有,如果交换一个球,有交换的都是红球、交换的都是蓝球、甲盒的红球换的乙盒的蓝球、甲盒的蓝球交换的乙盒的红球,红球的个数就会出现三种情况;如果交换的是两个球,有红球换红球、蓝球换蓝球、一蓝一红换一蓝一红、红换蓝、蓝换红、一蓝一红换两红、一蓝一红换亮蓝,对应的红球的个数就是五种情况,所以分析可以求得,故选A.点睛:该题考查的是有关随机事件的概率以及对应的期望的问题,在解题的过程中,需要对其对应的事件弄明白,对应的概率会算,以及变量的可取值会分析是多少,利用期望公式求得结果.8、C【解析】
根据等比数列的下标和性质可求出,便可得出等比数列的公比,再根据等比数列的性质即可求出.【详解】∵,∴,又,可解得或设等比数列的公比为,则当时,,∴;当时,,∴.故选:C.【点睛】本题主要考查等比数列的性质应用,意在考查学生的数学运算能力,属于基础题.9、D【解析】
解一元二次不等式化简集合,再由集合的交集运算可得选项.【详解】因为集合,故选:D.【点睛】本题考查集合的交集运算,属于基础题.10、B【解析】
由三角函数的诱导公式和倍角公式化简即可.【详解】因为sinα+3π2=3故选B【点睛】本题考查了三角函数的诱导公式和倍角公式,灵活掌握公式是关键,属于基础题.11、A【解析】
根据y=Acos(ωx+φ)的图象变换规律,求得g(x)的解析式,根据定义域求出的范围,再利用余弦函数的图象和性质,求得ω的取值范围.【详解】函数的图象先向右平移个单位长度,可得的图象,再将图象上每个点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,∴周期,若函数在上没有零点,∴,∴,,解得,又,解得,当k=0时,解,当k=-1时,,可得,.故答案为:A.【点睛】本题考查函数y=Acos(ωx+φ)的图象变换及零点问题,此类问题通常采用数形结合思想,构建不等关系式,求解可得,属于较难题.12、D【解析】
根据复数z满足,利用复数的除法求得,再根据复数的概念求解.【详解】因为复数z满足,所以,所以z的虚部为.故选:D.【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先由正弦定理得到,再在三角形ABD、ADC中分别由正弦定理进一步得到B=C,最后利用面积公式计算即可.【详解】依题意可得,由正弦定理得,即,由图可知是钝角,所以,,在三角形ABD中,,,在三角形ADC中,由正弦定理得即,所以,,故,,,故的面积为.故答案为:.【点睛】本题考查正弦定理解三角形,考查学生的基本计算能力,要灵活运用正弦定理公式及三角形面积公式,本题属于中档题.14、【解析】
先表示出渐近线,再代入点,求出,则离心率易求.【详解】解:的渐近线是因为在渐近线上,所以,故答案为:【点睛】考查双曲线的离心率的求法,是基础题.15、4【解析】
根据等差数列关系,用首项和公差表示出,解出首项和公差的关系,即可得解.【详解】设等差数列的公差为,由题意得:,则整理得,,所以故答案为:4【点睛】此题考查等差数列基本量的计算,涉及等比中项,考查基本计算能力.16、答案不唯一,如【解析】
根据等差数列的性质可得到满足条件的数列.【详解】由题意知,不妨设,则,很明显为递减数列,说明原命题是假命题.所以,答案不唯一,符合条件即可.【点睛】本题考查对等差数列的概念和性质的理解,关键是假设出一个递减的数列,还需检验是否满足命题中的条件,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)0.0294.(2)应选生产线②.见解析【解析】
(1)由题意转化条件得A工序不出现故障B工序出现故障,利用相互独立事件的概率公式即可得解;(2)分别算出两个生产线增加的生产成本的期望,进而求出两个生产线的生产成本期望值,比较期望值即可得解.【详解】(1)若选择生产线①,生产成本恰好为18万元,即A工序不出现故障B工序出现故障,故所求的概率为.(2)若选择生产线①,设增加的生产成本为(万元),则的可能取值为0,2,3,5.,,,,所以万元;故选生产线①的生产成本期望值为(万元).若选生产线②,设增加的生产成本为(万元),则的可能取值为0,8,5,13.,,,,所以,故选生产线②的生产成本期望值为(万元),故应选生产线②.【点睛】本题考查了相互独立事件的概率,考查了离散型随机变量期望的应用,属于中档题.18、(1);(2)见解析【解析】
(1)等价于(Ⅰ)或(Ⅱ)或(Ⅲ),分别解出,再求并集即可;(2)利用基本不等式及可得,代入可得最值.【详解】(1)等价于(Ⅰ)或(Ⅱ)或(Ⅲ)由(Ⅰ)得:由(Ⅱ)得:由(Ⅲ)得:.原不等式的解集为;(2),,,,,当且仅当,即时取等号,,当且仅当即时取等号,.【点睛】本题考查分类讨论解绝对值不等式,考查三角不等式的应用及基本不等式的应用,是一道中档题.19、(1);(2)见解析.【解析】
(1)分、、三种情况解不等式,综合可得出原不等式的的解集;(2)利用绝对值三角不等式可求得函数的最小值为,进而可得出,再将代数式与相乘,利用基本不等式求得的最小值,进而可证得结论成立.【详解】(1)当时,由,得,即,解得,此时;当时,由,得,即,解得,此时;当时,由,得,即,解得,此时.综上所述,不等式的解集为;(2),当且仅当时取等号,所以,.所以,当且仅当,即,时等号成立,所以.所以,即.【点睛】本题考查含绝对值不等式的求解,同时也考查了利用基本不等式证明不等式成立,涉及绝对值三角不等式的应用,考查运算求解能力,属于中等题.20、(1);(2)①证明见解析;②证明见解析【解析】
(1)解方程即可;(2)①设直线,,,将点的坐标用表示,证明即可;②分别用表示,,的面积即可.【详解】(1)解之得:的标准方程为:(2)①,,设直线代入椭圆方程:设,,,直线,直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024美容院客户投诉处理协议
- 2024年销售代表就业协议书3篇
- 二零二五年度现代简约餐厅装饰装修与品牌推广合同3篇
- 2025年度大米种植与收购金融服务合同3篇
- 2025年度道路施工安全防护及交通疏导协议3篇
- 2024年运输合同之货物运输路线与时间保障
- 2025年度智能调光窗帘系统项目合同书3篇
- 2025年度临时运输司机绩效考核及奖励合同4篇
- 2024衣柜墙板吊顶装修工程款项支付与结算合同
- 2025年度二零二五厂区生态修复与绿化养护综合服务合同3篇
- 2025年中国高纯生铁行业政策、市场规模及投资前景研究报告(智研咨询发布)
- 湖北省黄石市阳新县2024-2025学年八年级上学期数学期末考试题 含答案
- 2022-2024年浙江中考英语试题汇编:完形填空(学生版)
- 2025年广东省广州市荔湾区各街道办事处招聘90人历年高频重点提升(共500题)附带答案详解
- 中试部培训资料
- 硝化棉是天然纤维素硝化棉制造行业分析报告
- 央视网2025亚冬会营销方案
- 北师大版数学三年级下册竖式计算题100道
- 计算机网络技术全套教学课件
- 屋顶分布式光伏发电项目施工重点难点分析及应对措施
- 胃镜下超声穿刺护理配合
评论
0/150
提交评论