版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年安徽省安庆二中、天成中学高三数学第一学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等比数列若则()A.±6 B.6 C.-6 D.2.抛物线的准线与轴的交点为点,过点作直线与抛物线交于、两点,使得是的中点,则直线的斜率为()A. B. C.1 D.3.执行如图的程序框图,若输出的结果,则输入的值为()A. B.C.3或 D.或4.在复平面内,复数(,)对应向量(O为坐标原点),设,以射线Ox为始边,OZ为终边旋转的角为,则,法国数学家棣莫弗发现了棣莫弗定理:,,则,由棣莫弗定理可以导出复数乘方公式:,已知,则()A. B.4 C. D.165.执行下面的程序框图,则输出的值为()A. B. C. D.6.中,点在边上,平分,若,,,,则()A. B. C. D.7.已知抛物线的焦点为,若抛物线上的点关于直线对称的点恰好在射线上,则直线被截得的弦长为()A. B. C. D.8.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,29.已知过点且与曲线相切的直线的条数有().A.0 B.1 C.2 D.310.已知为一条直线,为两个不同的平面,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则11.已知为抛物线的准线,抛物线上的点到的距离为,点的坐标为,则的最小值是()A. B.4 C.2 D.12.已知平面平面,且是正方形,在正方形内部有一点,满足与平面所成的角相等,则点的轨迹长度为()A. B.16 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设为等比数列的前项和,若,且,,成等差数列,则.14.已知函数,若对于任意正实数,均存在以为三边边长的三角形,则实数k的取值范围是_______.15.过直线上一点作圆的两条切线,切点分别为,,则的最小值是______.16.三个小朋友之间送礼物,约定每人送出一份礼物给另外两人中的一人(送给两个人的可能性相同),则三人都收到礼物的概率为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在等腰梯形中,AD∥BC,,,,,分别为,,的中点,以为折痕将折起,使点到达点位置(平面).(1)若为直线上任意一点,证明:MH∥平面;(2)若直线与直线所成角为,求二面角的余弦值.18.(12分)若养殖场每个月生猪的死亡率不超过,则该养殖场考核为合格,该养殖场在2019年1月到8月养殖生猪的相关数据如下表所示:月份1月2月3月4月5月6月7月8月月养殖量/千只33456791012月利润/十万元3.64.14.45.26.27.57.99.1生猪死亡数/只293749537798126145(1)从该养殖场2019年2月到6月这5个月中任意选取3个月,求恰好有2个月考核获得合格的概率;(2)根据1月到8月的数据,求出月利润y(十万元)关于月养殖量x(千只)的线性回归方程(精确到0.001).(3)预计在今后的养殖中,月利润与月养殖量仍然服从(2)中的关系,若9月份的养殖量为1.5万只,试估计:该月利润约为多少万元?附:线性回归方程中斜率和截距用最小二乘法估计计算公式如下:,参考数据:.19.(12分)已知函数,记不等式的解集为.(1)求;(2)设,证明:.20.(12分)武汉有“九省通衢”之称,也称为“江城”,是国家历史文化名城.其中著名的景点有黄鹤楼、户部巷、东湖风景区等等.(1)为了解“五·一”劳动节当日江城某旅游景点游客年龄的分布情况,从年龄在22岁到52岁的游客中随机抽取了1000人,制成了如图的频率分布直方图:现从年龄在内的游客中,采用分层抽样的方法抽取10人,再从抽取的10人中随机抽取4人,记4人中年龄在内的人数为,求;(2)为了给游客提供更舒适的旅游体验,该旅游景点游船中心计划在2020年劳动节当日投入至少1艘至多3艘型游船供游客乘坐观光.由2010到2019这10年间的数据资料显示每年劳动节当日客流量(单位:万人)都大于1.将每年劳动节当日客流量数据分成3个区间整理得表:劳动节当日客流量频数(年)244以这10年的数据资料记录的3个区间客流量的频率作为每年客流量在该区间段发生的概率,且每年劳动节当日客流量相互独立.该游船中心希望投入的型游船尽可能被充分利用,但每年劳动节当日型游船最多使用量(单位:艘)要受当日客流量(单位:万人)的影响,其关联关系如下表:劳动节当日客流量型游船最多使用量123若某艘型游船在劳动节当日被投入且被使用,则游船中心当日可获得利润3万元;若某艘型游船劳动节当日被投入却不被使用,则游船中心当日亏损0.5万元.记(单位:万元)表示该游船中心在劳动节当日获得的总利润,的数学期望越大游船中心在劳动节当日获得的总利润越大,问该游船中心在2020年劳动节当日应投入多少艘型游船才能使其当日获得的总利润最大?21.(12分)等比数列中,.(Ⅰ)求的通项公式;(Ⅱ)记为的前项和.若,求.22.(10分)已知a>0,证明:1.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据等比中项性质代入可得解,由等比数列项的性质确定值即可.【详解】由等比数列中等比中项性质可知,,所以,而由等比数列性质可知奇数项符号相同,所以,故选:B.【点睛】本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题.2、B【解析】
设点、,设直线的方程为,由题意得出,将直线的方程与抛物线的方程联立,列出韦达定理,结合可求得的值,由此可得出直线的斜率.【详解】由题意可知点,设点、,设直线的方程为,由于点是的中点,则,将直线的方程与抛物线的方程联立得,整理得,由韦达定理得,得,,解得,因此,直线的斜率为.故选:B.【点睛】本题考查直线斜率的求解,考查直线与抛物线的综合问题,涉及韦达定理设而不求法的应用,考查运算求解能力,属于中等题.3、D【解析】
根据逆运算,倒推回求x的值,根据x的范围取舍即可得选项.【详解】因为,所以当,解得
,所以3是输入的x的值;当时,解得,所以是输入的x的值,所以输入的x的值为
或3,故选:D.【点睛】本题考查了程序框图的简单应用,通过结果反求输入的值,属于基础题.4、D【解析】
根据复数乘方公式:,直接求解即可.【详解】,.故选:D【点睛】本题考查了复数的新定义题目、同时考查了复数模的求法,解题的关键是理解棣莫弗定理,将复数化为棣莫弗定理形式,属于基础题.5、D【解析】
根据框图,模拟程序运行,即可求出答案.【详解】运行程序,,
,,,,,结束循环,故输出,故选:D.【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.6、B【解析】
由平分,根据三角形内角平分线定理可得,再根据平面向量的加减法运算即得答案.【详解】平分,根据三角形内角平分线定理可得,又,,,,..故选:.【点睛】本题主要考查平面向量的线性运算,属于基础题.7、B【解析】
由焦点得抛物线方程,设点的坐标为,根据对称可求出点的坐标,写出直线方程,联立抛物线求交点,计算弦长即可.【详解】抛物线的焦点为,则,即,设点的坐标为,点的坐标为,如图:∴,解得,或(舍去),∴∴直线的方程为,设直线与抛物线的另一个交点为,由,解得或,∴,∴,故直线被截得的弦长为.故选:B.【点睛】本题主要考查了抛物线的标准方程,简单几何性质,点关于直线对称,属于中档题.8、C【解析】
先求出集合U,再根据补集的定义求出结果即可.【详解】由题意得U=x|∵A=1,2∴CU故选C.【点睛】本题考查集合补集的运算,求解的关键是正确求出集合U和熟悉补集的定义,属于简单题.9、C【解析】
设切点为,则,由于直线经过点,可得切线的斜率,再根据导数的几何意义求出曲线在点处的切线斜率,建立关于的方程,从而可求方程.【详解】若直线与曲线切于点,则,又∵,∴,∴,解得,,∴过点与曲线相切的直线方程为或,故选C.【点睛】本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.10、D【解析】A.若,则或,故A错误;B.若,则或故B错误;C.若,则或,或与相交;D.若,则,正确.故选D.11、B【解析】
设抛物线焦点为,由题意利用抛物线的定义可得,当共线时,取得最小值,由此求得答案.【详解】解:抛物线焦点,准线,过作交于点,连接由抛物线定义,
,
当且仅当三点共线时,取“=”号,∴的最小值为.
故选:B.【点睛】本题主要考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想,属于中档题.12、C【解析】
根据与平面所成的角相等,判断出,建立平面直角坐标系,求得点的轨迹方程,由此求得点的轨迹长度.【详解】由于平面平面,且交线为,,所以平面,平面.所以和分别是直线与平面所成的角,所以,所以,即,所以.以为原点建立平面直角坐标系如下图所示,则,,设(点在第一象限内),由得,即,化简得,由于点在第一象限内,所以点的轨迹是以为圆心,半径为的圆在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以点的轨迹长度为.故选:C【点睛】本小题主要考查线面角的概念和运用,考查动点轨迹方程的求法,考查空间想象能力和逻辑推理能力,考查数形结合的数学思想方法,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】试题分析:∵,,成等差数列,∴,又∵等比数列,∴.考点:等差数列与等比数列的性质.【名师点睛】本题主要考查等差与等比数列的性质,属于容易题,在解题过程中,需要建立关于等比数列基本量的方程即可求解,考查学生等价转化的思想与方程思想.14、【解析】
根据三角形三边关系可知对任意的恒成立,将的解析式用分离常数法变形,由均值不等式可得分母的取值范围,则整个式子的取值范围由的符号决定,故分为三类讨论,根据函数的单调性求出函数值域,再讨论,转化为的最小值与的最大值的不等式,进而求出的取值范围.【详解】因为对任意正实数,都存在以为三边长的三角形,故对任意的恒成立,,令,则,当,即时,该函数在上单调递减,则;当,即时,,当,即时,该函数在上单调递增,则,所以,当时,因为,,所以,解得;当时,,满足条件;当时,,且,所以,解得,综上,,故答案为:【点睛】本题考查参数范围,考查三角形的构成条件,考查利用函数单调性求函数值域,考查分类讨论思想与转化思想.15、【解析】
由切线的性质,可知,切由直角三角形PAO,PBO,即可设,进而表示,由图像观察可知进而求出x的范围,再用的式子表示,整理后利用换元法与双勾函数求出最小值.【详解】由题可知,,设,由切线的性质可知,则显然,则或(舍去)因为令,则,由双勾函数单调性可知其在区间上单调递增,所以故答案为:【点睛】本题考查在以直线与圆的位置关系为背景下求向量数量积的最值问题,应用函数形式表示所求式子,进而利用分析函数单调性或基本不等式求得最值,属于较难题.16、【解析】
基本事件总数,三人都收到礼物包含的基本事件个数.由此能求出三人都收到礼物的概率.【详解】三个小朋友之间准备送礼物,约定每人只能送出一份礼物给另外两人中的一人(送给两个人的可能性相同),基本事件总数,三人都收到礼物包含的基本事件个数.则三人都收到礼物的概率.故答案为:.【点睛】本题考查古典概型概率的求法,考查运算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
(1)根据中位线证明平面平面,即可证明MH∥平面;(2)以,,为,,轴建立空间直角坐标系,找到点的坐标代入公式即可计算二面角的余弦值.【详解】(1)证明:连接,∵,,分别为,,的中点,∴,又∵平面,平面,∴平面,同理,平面,∵平面,平面,,∴平面平面,∵平面,∴平面.(2)连接,在和中,由余弦定理可得,,由与互补,,,可解得,于是,∴,,∵,直线与直线所成角为,∴,又,∴,即,∴平面,∴平面平面,∵为中点,,∴平面,如图所示,分别以,,为,,轴建立空间直角坐标系,则,,,,.设平面的法向量为,∴,即.令,则,,可得平面的一个法向量为.又平面的一个法向量为,∴,∴二面角的余弦值为.【点睛】此题考查线面平行,建系通过坐标求二面角等知识点,属于一般性题目.18、(1);(2);(3)利润约为111.2万元.【解析】
(1)首先列出基本事件,然后根据古典概型求出恰好两个月合格的概率;(2)首先求出利润y和养殖量x的平均值,然后根据公式求出线性回归方程中的斜率和截距即可求出线性回归方程;(3)根据线性回归方程代入9月份的数据即可求出9月利润.【详解】(1)2月到6月中,合格的月份为2,3,4月份,则5个月份任意选取3个月份的基本事件有,,,,,,,,,,共计10个,故恰好有两个月考核合格的概率为;(2),,,,故;(3)当千只,(十万元)(万元),故9月份的利润约为111.2万元.【点睛】本题主要考查了古典概型,线性回归方程的求解和使用,属于基础题.19、(1);(2)证明见解析【解析】
(1)利用零点分段法将表示为分段函数的形式,由此解不等式求得不等式的解集.(2)将不等式坐标因式分解,结合(1)的结论证得不等式成立.【详解】(1)解:,由,解得,故.(2)证明:因为,所以,,所以,所以.【点睛】本小题主要考查绝对值不等式的解法,考查不等式的证明,属于基础题.20、(1);(2)投入3艘型游船使其当日获得的总利润最大【解析】
(1)首先计算出在,内抽取的人数,然后利用超几何分布概率计算公式,计
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度建筑工程合同:某商业大楼建筑工程施工合同
- 热力供应合同范例
- 提供食宿合同范例
- 2024年度800亿宜宾酒王产品销售控量保价合同
- 海外营销推广合同模板
- 施工车辆合同范例
- 电厂压价采购合同范例
- 2024年度办公室租赁合同北京范本
- 淘宝租赁居间合同范例
- 拟定委托合同范例
- MOOC 唐宋诗词与传统文化-湖南师范大学 中国大学慕课答案
- 电网建设项目施工项目部环境保护和水土保持标准化管理手册(变电工程分册)
- 2024【中期检查】《信息技术与高中数学教学的深度融合研究》课题研究中期报告新
- 专题01非连续性文本阅读(解析版)
- 国开2024年《统计学原理》形成性考核1-3答案
- 2024年-咨询服务合同协议书范本
- 金融基础知识考试题库300题(含答案)
- 2024 年咨询工程师《宏观经济政策与发展规划》猛龙过江口袋书
- 追觅入职测评题库
- 弹力袜的使用课件
- 2024年医学高级职称-妇女保健(医学高级)笔试历年真题荟萃含答案
评论
0/150
提交评论