




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省汕头市澄海县立中学高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐近线垂直,那么此双曲线的离心率为(
)
A.
B.
C.
D.参考答案:D2.如图21-7所示程序框图,若输出的结果y的值为1,则输入的x的值的集合为()图21-7A.{3}
B.{2,3}C.
D.
参考答案:C3.幂指函数y=f(x)g(x)在求导数时,可以运用对数法:在函数解析式两边求对数得lny=g(x)lnf(x),两边求导数得=g′(x)lnf(x)+g(x),于是y′=f(x)g(x)·.运用此法可以探求得知y=的一个单调递增区间为
().A.(0,2)
B.(2,3)
C.(e,4)
D.(3,8)参考答案:A4.已知向量=(﹣2,1),=(x,y),x∈,y∈则满足?<0的概率是(
)A. B. C. D.参考答案:A【考点】平面向量数量积的运算.【专题】数形结合;综合法;平面向量及应用;不等式.【分析】可用A表示事件“”,可以得到试验的全部结果所构成的区域为{(x,y)|1≤x≤6,1≤y≤6},而事件A表示的区域为{(x,y)|1≤x≤6,1≤y≤6,﹣2x+y<0},从而可画图表示这两个区域,从而求这两个区域的面积比便是事件A的概率.【解答】解:用A表示事件“”;试验的全部结果所构成的区域为{(x,y)|1≤x≤6,1≤y≤6};构成事件A的区域为{(x,y)|1≤x≤6,1≤y≤6,且﹣2x+y<0};画出图形如下图:图中矩形及矩形内部表示试验的全部结果所表示的区域,阴影部分表示事件A表示的区域;∴P(A)=.故选:A.【点评】考查概率的概念,几何概型的计算方法,以及能够找出不等式所表示的平面区域.5.要从已编号(1—50)的50件产品中随机抽取5件进行检验,用系统抽样方法确定所选取的5件产品的编号可能是(
)A.5,10,15,20,25
B.2,4,8,16,22C.1,2,3,4,5
D.3,13,23,33,43参考答案:D略6.在等差数列{an}中,若a2+a4+a6+a8+a10=80,则a7﹣a8的值为()A.4 B.6 C.8 D.10参考答案:C【考点】等差数列的性质.【专题】整体思想.【分析】利用等差数列的性质先求出a6的值,再用a1与d表示出a7﹣?a8,找出两者之间的关系,求解即可.【解答】解:由已知得:(a2+a10)+(a4+a8)+a6=5a6=80,∴a6=16,设等差数列{an}首项为a1,公差为d,则a7﹣a8=a1+6d﹣(a1+7d)=(a1+5d)=a6=8.故选C.【点评】本题考查了等差数列的性质和通项公式,应用了基本量思想和整体代换思想.等差数列的性质:{an}为等差数列,当m+n=p+q(m,n,p,q∈N+)时,am+an=ap+aq.特例:若m+n=2p(m,n,p∈N+),则am+an=2ap.7.若命题p:?a∈R,方程ax+1=0有解;命题q:?m<0使直线x+my=0与直线2x+y+1=0平行,则下列命题为真的有()A.p∧q B.p∨q C.(?p)∨q D.(?p)∧q参考答案:C【考点】2E:复合命题的真假.【分析】分别判断p,q的真假,从而判断复合命题的真假即可.【解答】解:命题p:?a∈R,方程ax+1=0有解,命题p是假命题,比如a=0时,不成立;命题q:?m<0使直线x+my=0与直线2x+y+1=0平行,命题q是假命题,直线平行时,m=是正数,故(?p)∨q是真命题,故选:C.8.工人工资y(元)与劳动生产率x(千元)的回归方程为,下列判断正确的是(
)A.劳动生产率为1000元时,工人工资为120元B.劳动生产率提高1000元时,可估测工资提高90元C.劳动生产率提高1000元时,可估测工资提高120元D.当月工资为210元时,劳动生产率为2000元参考答案:B分析:根据回归分析系数的意义,逐一分析四个结论的真假,可得答案.详解:工人的月工资y(元)与劳动生产率x(千元)的回归方程为为,劳动生产率为1000元时,工资预报值为120元,而非工资为120元,故A错误;劳动生产率提高1000元,则工资平均提高90元,故B正确,C错误;当月工资为210元时,劳动生产率的预报值为2000元,而不是劳动生产率为2000元,故D错误,故选B.点睛:本题主要考查回归方程的意义,属于简单题.利用回归方程估计总体一定要注意两点:一是所有由回归方程得到的值,都是预测值(或估计值,或平均值),而不是一定发生的结果;二是回归方程的系数可以预测变化率(负减正增).9.已知zC,且,i为虚数单位,则的最小值是(
)A.2
B.3
C.4
D.5参考答案:B10.已知集合,,若,则a,b之间的关系是(
)A. B. C. D.参考答案:C【分析】先设出复数z,利用复数相等的定义得到集合A看成复平面上直线上的点,集合B可看成复平面上圆的点集,若A∩B=?即直线与圆没有交点,借助直线与圆相离的定义建立不等关系即可.【详解】设z=x+yi,则(a+bi)(x﹣yi)+(a﹣bi)(x+yi)+2=0化简整理得,ax+by+1=0即,集合A可看成复平面上直线上的点,集合B可看成复平面上圆x2+y2=0的点集,若A∩B=?,即直线ax+by+1=0与圆x2+y2=0没有交点,d,即a2+b2<1故选:C.【点睛】本题考查了复数相等的定义及几何意义,考查了直线与圆的位置关系,考查了转化思想,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11.在类比此性质,如下图,在四面体P-ABC中,若PA、PB、PC两两垂直,底面ABC上的高为h,则得到的正确结论为__________________________.参考答案:
12.若集合U={1,2,3,4,5},M={1,2,4},则CUM=_____.参考答案:{3,5}【分析】根据集合补集的概念及运算,即可求解,得到答案.【详解】由题意,集合,根据补集的运算可得.故答案为:{3,5}.【点睛】本题主要考查了集合的表示,以及补集的运算,其中解答中熟记集合的补集的概念及运算是解答的关键,着重考查了运算与求解能力.13.过点(2,-4)且与直线平行的直线的一般式方程是_________________.参考答案:14.描述算法的方法通常有:(1)自然语言;(2)
;(3)伪代码.参考答案:流程图15.下列四个命题中,假命题的序号有
写出所有真命题的序号)①若则“”是“”成立的充分不必要条件;②当时,函数的最小值为2;③若函数f(x+1)定义域为[-2,3),则的定义域为;④将函数y=cos2x的图像向右平移个单位,得到y=cos(2x-)的图像.⑤若,向量与向量的夹角为,则在向量上的投影为1参考答案:①②④⑤略16.如右图,在直角梯形中,,,,,点是梯形内(包括边界)的一个动点,点是边的中点,则
的最大值是______参考答案:617..能说明“若,则是函数极值点”为假命题的一个函数是______________.参考答案:或等,答案不唯一【分析】根据极值点的定义求解.【详解】极值点的导数必需为零,且极值点左右两侧的函数单调性相反.函数,当时,,但是在上单调递增,所以不是函数的极值点.【点睛】本题考查极值点的定义,考查命题真假的判断,属于基础题三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.十九大提出,加快水污染防治,建设美丽中国根据环保部门对某河流的每年污水排放量X(单位:吨)的历史统计数据,得到如下频率分布表:
污水量[230,250)[250,270)[270,290)[290,310)[310,330)[330,350)
频率
0.3
0.44
0.15
0.1
0.005
0.005
将污水排放量落入各组的频率作为概率,并假设每年该河流的污水排放量相互独立.(Ⅰ)求在未来3年里,至多1年污水排放量的概率;(Ⅱ)该河流的污水排放对沿河的经济影响如下:当时,没有影响;当时,经济损失为10万元;当时,经济损失为60万元为减少损失,现有三种应对方案:方案一:防治350吨的污水排放,每年需要防治费3.8万元;方案二:防治310吨的污水排放,每年需要防治费2万元;方案三:不采取措施.试比较上述三种方案,哪种方案好,并请说明理由.参考答案:(Ⅰ);(Ⅱ)采取方案二最好,理由详见解析.【分析】(Ⅰ)先求污水排放量的概率0.25,然后再求未来3年里,至多1年污水排放量的概率;(Ⅱ)分别求解三种方案的经济损失的平均费用,根据费用多少作出决策.【详解】解:(Ⅰ)由题得,设在未来3年里,河流的污水排放量的年数为Y,则设事件“在未来3年里,至多有一年污水排放量”为事件A,则.在未来3年里,至多1年污水排放量的概率为.(Ⅱ)方案二好,理由如下:由题得,.用,,分别表示方案一、方案二、方案三的经济损失,则万元.的分布列为:
2
62
P
.的分布列为:
0
10
60
P
.三种方案中方案二的平均损失最小,采取方案二最好.【点睛】本题主要考查随机变量的分布列和期望,数学期望是生活生产中进行决策的主要指标,侧重考查数学建模和数学运算的核心素养.19.已知椭圆,若在(2,0),,,四个点中有3个在M上.(1)求椭圆M的方程;(2)若点A与点B是椭圆M上关于原点对称的两个点,且,求的取值范围.参考答案:(1).(2)【分析】(1)由于椭圆是对称图形,得点,必在椭圆上,故,再分别讨论在上时和在上时椭圆的方程,根据题意进行排除,最后求解出结果。(2)设,,利用向量的坐标运算表达出的值,根据对称性分类讨论设出直线的方程,联立椭圆方程,结合韦达定理,将转化为求函数的值域问题,从而求解出的范围。【详解】解:(1)与关于轴对称,由题意知在上,当在上时,,,,当上时,,,∴与矛盾,∴椭圆的方程为.(2)设,,、关于坐标原点对称,,,.当与轴不垂直时,设直线的方程为,代入椭圆方程得,,,由于可以取任何实数,故.当与轴垂直时,,,∴.综上可得.【点睛】本题主要考查圆锥曲线的综合性题目,解决这类题目常用数学思想方法有方程思想,数形结合思想,设而不求与整体代入思想等。
20.已知函数.(1)若曲线在x=l和x=3处的切线互相平行,求a的值及函数的单调区间;(2)设,若对任意,均存在,使得,求实数a的取值范围.参考答案:解:(1),由得,
3分所以:单调递增区间为,,单调递减区间为.
6分(2)若要命题成立,只须当时,.由可知,当时,所以只须.
8分对来说,,①当时,
9分当时,显然,满足题意,
10分当时,令,,所以递减,所以,满足题意,所以满足题意;
11分②当时,在上单调递增,所以得,
13分综上所述,.
14分考点:导数的几何意义,应用导数研究函数的单调性、最值.
略21.如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AC=4,BC=3,AB=5,AA1=4,点D是AB的中点.(1)求证:AC1∥平面CDB1;(2)求直线AB1与平面BB1C1C所成角的正切值.参考答案:【考点】直线与平面所成的角;直线与平面平行的判定.【专题】证明题;转化思想;综合法;空间角.【分析】(1)设BC1∩CB1于点O,连结OD,则OD,由此能证明AC1∥平面CDB1.(2)推导出AC⊥BC,AC⊥C1C,从而∠AB1C是直线AB1与平面B1BCC1所成角,由此能求出直线AB1与平面BB1C1C所成角的正弦值.【解答】证明:(1)如图,设BC1∩CB1于点O,连结OD,∵O、D分别是BC1和AB的中点,∴OD,又∵OD?平面CDB1,AC1?平面CDB1,∴AC1∥平面CDB1.(2)∵AC=4,BC=2,AB=5,∴∠ACB=90°,即AC⊥BC,在三棱柱ABC﹣A1B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家校携手同筑梦+双向奔赴育花开+高二下学期第二考家长会
- 2025年电动学生车项目可行性研究报告
- 2025年生物碘项目可行性研究报告
- 2025年环保型不黄变哑光地板漆项目可行性研究报告
- 2025年特大门牙项目可行性研究报告
- 2025年燃料电池集流板项目可行性研究报告
- 辽宁大学《FORTRAN语言程序设计》2023-2024学年第二学期期末试卷
- 岳阳职业技术学院《场面研究》2023-2024学年第二学期期末试卷
- 天津医科大学临床医学院《环境中的科学与工程》2023-2024学年第二学期期末试卷
- 江西省赣州市兴国县2025届初三3月第一次模拟英语试题含答案
- 教育教学研究项目效果实践检验报告
- 提升员工的团队协作与沟通能力
- 第三章 装配式混凝土预制构件生产工艺
- crystalball模拟基础教程课件
- 夏商周考古-郑州大学中国大学mooc课后章节答案期末考试题库2023年
- 【上海市静安区宝山路街道社区养老问题调查报告】
- 公文筐测验(案例题解示范)
- 外科学骨与关节化脓性感染
- 口腔一般检查方法口腔一般检查方法
- 冠状动脉粥样硬化性心脏病 (心内科)
- GB/T 4857.10-2005包装运输包装件基本试验第10部分:正弦变频振动试验方法
评论
0/150
提交评论