




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ABriefIntroductionto
ModernChemistryHansongChengTableofContentsChapter1.FundamentalsChapter2.TheFoundationofModernChemistryChapter3.StatesofMatterChapter4.Chemistry,ChemicalEngineeringandMaterialsScienceChapter5.FrontiersChapter1.FundamentalsChemistry:ACoreScienceChemistryandphysics(physicalsciences)Chemistryandbiology(lifescience)Chemistryandmaterials(materialsscience)Chemistryandchemicalengineering(engineeringscience)ChemistryandnanotechnologyChemistryandenvironmentalscienceScienceandScientists"Scientists,contrarytothemyththattheythemselvespubliclypromulgate,areemotionalhumanbeingswhocarryagenerousdoseofsubjectivitywiththemintothesupposedly'objectivesearchforTheTruth'.…Theanonymousaphorism,'Iwouldn'thaveseenitifIhadn'tbelievedit'isacontinuingtruthinscience.Andofcourse,itcutstwoways:youoftenseewhatyouexpecttoseeandnotwhatyoudon't."
Science:objectiveScientists:subjectiveSciencewriterandEvolutionistRogerLewin:ScienceLearningandScientificResearchClassroomlearning:PassiveLearningwhathasbeenalreadydiscoveredKnowledgebuildingScientificresearch:ProactiveDiscoveryofunknownsExperiencebuildingScienceandScientificMethodsEmpiricalobservationsIdentificationofkeyissuesBackgroundsearchEstablishmentofascientificmodelIdentifythekeycharacteristicphenomenaSimplifythemodelbyeliminatingunimportantcharacteristicsanddefiningthelimitofthemodelScientificproofs(experiments)MechanismsCommunicationsInteractingwitheachotherPresentationsScientificEthicsHonestyinreportingofscientificdata;Carefultranscriptionandanalysisofscientificresultstoavoiderror;Independentanalysisandinterpretationofresultsbasedondataandnotontheinfluenceofexternalsources;Opensharingofmethods,data,andinterpretationsthroughpublicationandpresentation;Sufficientvalidationofresultsthroughreplicationandcollaborationwithpeers;Propercreditingofsourcesofinformation,data,andideas;Moralobligationstosocietyingeneral,and,insomedisciplines,responsibilityinweighingtherightsofhumanandanimalsubjectsFrom:http:///library/module_viewer.php?mid=161ModernPhysicalSciencesTowardtheendofthe19thcenturymanyphysicistsheldthatalltheprinciplesofphysicshadbeendiscoveredNewton’smechanicshadbeenbroughttoahighdegreeofsophisticationbytheworkofLagrangeandHamiltonTheequivalenceofheatandmechanicalworkhadbeenclearlydemonstratedbyCountRumfordandJouleClassicalPhysicsThecompletedevelopmentofthermodynamicshadbeenformulatedbyGibbs,whichremainsunchangedtodayThekinetictheoryofgasesandstatisticalmechanicshadbeenrefinedtoahighdegreebyMaxwell,BoltzmannandGibbsInthefieldofoptics,theworkofYoungandFresneloninterferencephenomenahadresultedintheacceptanceofthewavetheoryoflight(Huygens)overthecorpusculartheoryoflight(Newton)QuantumMechanicsandMolecularThermodynamicsClassicalPhysicsTheunificationofoptics,electricityandmagnetismwithinMaxwell’sequationsoftheelectromagneticnatureoflightQuantumMechanicsandMolecularThermodynamicsThebodyoftheseaccomplishmentsisnowconsideredtobethedevelopmentofwhatwenowrefertoas‘classicalphysics’.ClassicalPhysicsTheDiscoveryofElectronsInthelate19thcentury,itbecamepossibletosealmetalelectrodeswithinaglasstubeandthenevacuatethetubetoverylowpressuresBeforeevacuation,anincreaseinvoltageacrosstheelectrodesresultsinasparkAsthepressureislowered,thesparkingisreplacedbyaluminousbeamSirJohnJ.ThomsonIn1897,J.J.ThomsondemonstratedthatthebeamthatleavesthecathodeconsistsofnegativelychargeddiscreteparticlesBybalancingthebeambetweenanelectricandmagneticfield,Thomsonwasabletomeasurethecharge-to-massratiooftheseparticlesThusheshowedthatanelectronwaslighterthanthelightestatomQuantumMechanicsandMolecularThermodynamicsTheDiscoveryofElectronsThisdiscoveryofasubatomicparticletogetherwiththediscoveryofX-raysbyRöentgenin1895andradioactivitybyBecquerelin1896showedthattheatomwasfarmorecomplexthanpreviouslythought.TheseriesofexperimentsthatrevolutionisedtheconceptsofphysicshadtodowiththeradiationgivenoffbymaterialbodieswhenheatedAsabodyisheatedtohigherandhighertemperaturesthereisacontinualshiftofcolourfromredthroughwhitetoblueTheexactspectrumemittedbyabodydependsontheparticularbodyitself,butanidealbody,onethatabsorbsandemitsradiationwithoutfavouringparticularfrequencies,iscalledablackbodyradiatorQuantumMechanicsandMolecularThermodynamicsBlackbodyRadiationQuantumMechanicsandMolecularThermodynamicsBlackbodyRadiationTheQuantumHypothesisThefirstpersontoofferasuccessfulexplanationofblackbodyradiationwasPlanckin1900LikeRayleighandJeans,PlanckassumedthattheradiationemittedbythebodywasduetotheoscillationsoftheelectronswithinthemediumPlanckmadetherevolutionaryQuantumMechanicsandMolecularThermodynamicsadhocassumptionthattheenergiesoftheoscillatorshadtobeproportionaltoanintegralmultipleofthefrequency,i.e.
εn=nhν,wherenisanintegerandhisaproportionalityconstantThephotoelectriceffectdiscoveredbyHertzistheejectionofelectronsfrommetallicsurfaceswhenilluminatedbyelectromagneticradiationTheexperimentaldatashowedthattheenergyoftheejectedelectronswasproportionaltothefrequencyoftheilluminatinglightThefactthattheejectionenergywasindependentofthetotalenergyofilluminationimpliedthattheinteractionmustbelikethatofaparticlewhichgivesallitsenergytotheelectronQuantumMechanicsandMolecularThermodynamicsThePhotoelectricEffectQuantumMechanicsandMolecularThermodynamicsThreeimportantresultsneedtobeexplained:Noelectronsareejected,regardlessoftheintensityoftheradiation,unlessthefrequencyexceedsathresholdvaluecharacteristicofthemetalThekineticenergyoftheejectedelectronsislinearlyproportionaltothefrequencyoftheincidentradiationbutindependentofitsintensityEvenatlowlightintensities,electronsareejectedimmediatelyifthefrequencyisabovethethresholdThePhotoelectricEffectToexplaintheseresults,EinsteinextendedPlanck’shypothesisinanimportantwayPlanckappliedtheenergyquantisationconceptΔε
=
hν,totheemissionandabsorptionmechanismofatomicelectronicoscillatorsPlanckbelievedthatoncethelightenergywasemitted,itbehavedlikeaclassicalwaveEinsteinproposedinsteadthatradiationitselfexistedassmallpacketsofenergy,ε
=
hν,whicharenowknownasphotonsThePhotoelectricEffectAlbertEinsteinQuantumMechanicsandMolecularThermodynamicsUsingconservationofenergy,thekineticenergyoftheemittedelectronsisequaltotheenergyoftheincidentradiationminustheminimumenergyrequiredtoremoveanelectronfromthesurfaceoftheparticularmetal(Φ)—theworkfunctionIfhν<Φ—noemission(satisfies1)Thekineticenergyoftheemittedelectronisproportionaltothefrequency(satisfies2)Providedhν>Φemissionwilloccurevenatlowintensity(satisfies3)ThePhotoelectricEffectTheslopeofthephotoelectricdatagivesavalueofhincloseagreementwithPlanck’svaluededucedfromblackbodyradiation.Intwoverydifferentsetsofexperiments,blackbodyradiationandthephotoelectriceffect,theverysamequantisationconstant,h,arosenaturally.ThePhotoelectricEffectOtherCrisisofClassicalPhysicsTemperaturedependentbehaviorofheatcapacitiesBohrmodelonthestructureofhydrogenatomComptonscattering(x-rayscatteringfromelectronsinacarbontarget)Scientistsalwayshadtroubledescribingthenatureoflight—isitawaveorisitaparticle?In1924,deBrogliereasonedthatiflightcanhavebothwaveandparticleproperties,whynotmatter?FromEinstein’srelativisticenergyequation,theenergyofaparticlewithzerorestmassistheproductofitsmomentumandthespeedoflight,E=pcCouplingthisequationwiththeenergyofaphoton,E
=hν,revealsthedeBrogliewavelengthrelationship,λ
=h/p,whichdeBroglieassertedheldforparticlesaswellasphotonsQuantumMechanicsandMolecularThermodynamicsWave–ParticleDualityTheconsequencesofthisrelationshiparefarreaching(theyledSchrödingertohistheoryofwavemechanics),butitsbasisinnatureisunquestionableElectrondiffractionwasobservedbyDavissonandGermer(1925)andG.P.Thomson(1927)ThewavelikepropertyofelectronsisusedinelectronmicroscopesThewavelengthsoftheelectronscanbecontrolledthroughanappliedvoltage,andthesmalldeBrogliewavelengthsofferafarmorepreciseprobethananordinarylightmicroscopeInaddition,incontrasttoelectromagneticradiationofsimilarwavelengths,theelectronbeamcanbereadilyfocusedusingelectricandmagneticfieldsQuantumMechanicsandMolecularThermodynamicsWave–ParticleDualityIn1927,ayearafterpresentinghistheoryofmatrixmechanics,Heisenbergstatedoneofthemostprovocativeideasinmodernscience—theso-calleduncertaintyprincipleTheHeisenberguncertaintyprinciplestatesthatitisnotpossibletodeterminesimultaneouslytoinfiniteprecisionofthemomentumandthepositionofaparticleInstead,theproductoftheuncertaintyinthemomentumwiththeuncertaintyinthepositionisgivenbythefollowingrelationQuantumMechanicsandMolecularThermodynamicsTheHeisenbergUncertaintyPrincipleTheuncertaintyprincipleisnotastatementabouttheinaccuracyofmeasurementinstruments,norareflectiononthequalityofexperimentalmethods;itarisesfromthewavepropertiesinherentinthequantum-mechanicaldescriptionofnatureFurther,theuncertaintyprincipleinvalidatestheBohrmodel—onecannotknowtheradiusandangularmomentumofanelectroninacircularorbitwithinfiniteprecisionQuantumMechanicsandMolecularThermodynamicsTheHeisenbergUncertaintyPrincipleChapter2.TheFoundationofModernChemistryChemistry:AtomsandMoleculesChemistrywasoriginatedfromexperimentsExplanationsonchemicalphenomenawerelargelyempiricalChemistryisascienceaboutatomsandmoleculesChemicalphenomenaaredictatedbyelectronicmotionQuantummechanicsaccuratelydescribeselectronicmotionandnuclearmotionFoundationofModernChemistryVirtually,allatoms,moleculesandchemicalprocessescanbedescribedbyquantummechanicsForheavyatoms,e.g.Au,elementsinlanthanideseries,relativistictheoryshouldalsobeusedduetothefastelectronicmotionQuantumMechanics
TheentirequantumchemistryisaboutEq.(2).Almostallthe
chemicalphenomenacanbeexplainedbysolvingthisequation.ElectronicStructureofAtoms
TheelectronicstructuresofotheratomsaresimilarbutdifferinenergylevelsandelectronoccupationElectronicStructureofAtomsTitanium(Ti)Gold(Au)MolecularOrbitalsAmolecularorbitalisalinearcombinationofatomicorbitalsoftheconstituentatomsTheelectronicenergiesofamoleculearequantizedapplicationstophotochemistry,solarcells,etc.ChemicalBondingCovalentbond:electronsaresharedbetweenatoms(notnecessarilyequal)Ionicbond:electronfromoneatomisattachedtoanotheratomCONaClMolecularInteractionsCovalentinteractions(bonds)Electrostaticinteractions(e.g.ionicbonds)Multipoleinteractions(e.g.dipole-dipole)vanderWaalsinteractions(weak)Hydrogenbondinginteractions(e.g.water)PotentialEnergySurfaceSchematicofapotentialenergylandscape.Athightemperatures(redline)thesystemisabletoovercomepotentialenergybarriersandsamplemanydifferentbasins.Anenergyminimizationisshownwiththeblackline:anequilibriumconfigurationismappedviasteepestdescenttoalocalminimumonthelandscape.MolecularStructureTheequilibriumstructurescorrespondtotheminimaofthepotentialenergysurfacesMolecularVibrationC-CStretchC-CWaveC-HStretchO-HStretchThermodynamicsMolecularinternalenergy(U)constituents:ElectronicenergyVibrationalenergyRotationalenergyTranslationalenergyEnthalpy:H=U+PVEntropy(S):ameasureofdisorderinathermodynamicsystemGibbsfreeenergy:G=H-TSChemicalKineticsArrheniusequation:thedependenceofthe
rateconstant
k
of
achemicalreaction
on
temperature
Tand
activationenergy
Ea:MolecularSpectroscopyUV/visibleIR/RamanNMRMSphotoelectronspectrum vibrationalspectrumXRDPhotoelectronspectroscopyAFM/STM/SEM/TEMChapter3.StatesofMatterStatesofMatterClassical:gasliquidsolidNon-classical:glasssuperfluid
plasmaMacroscopically,theequilibriumstatescanbedescribedbythermodynamicsandstatisticalmechanics.However,thedetailedmicroscopicprocessescanonlybedescribedbyquantummechanics.GasesIdealgasmodel:Nonidealgasmodel:vanderWaalsequationCondensedMatterSubstancesLiquids:manychemicalreactionsoccurinliquidphaseinteractionsbetweenmoleculesarestrongerthaninthegasphasemoleculesaresolvatedSolids:manycompoundsexistinsolidformsandreactionsmayoccuramongsolidmaterialsinteratomic/intermolecularinteractionsvaryClustersandNano-SizedMaterialsEvolutionofsmallclustersSolidsgraphite molecularsolid semiconductor metalClustersandNano-SizedMaterialsMolecularOrbitalsvs.EnergyBandsCH2=CH2H(CH=CH)2HH(CH=CH)3HH(CH=CH)4HH(CH=CH)2HH(CH=CH)5HH(CH=CH)6HDOS(4x4x1)non-metallic metallicprimitivecell electrondensity
differencegraphiteBandStructureFermiEnergyandFermi-DiracDistributionpuren-dopingp-dopingChapter4.Chemistry,ChemicalEngineeringandMaterialsScienceHomogeneousCatalysisProductionoffinechemicalsChiralsynthesisHeterogeneousCatalysisNOxreductionPetrochemicalrefineryHydrogenproductionBiomassreformingSemiconductorsBandgap:theenergydifferencebetweenaconductionbandandavalencebandAtypicalsemiconductorbandgapisbelow3eVThewidelyutilized
semiconductorsinclude
Si,SiC,SiN,GaAs,
Ge,InAs,etc.CopperDepositiononSiCuThinFilm:CurrentTechnologyIMDIMDPVDTaNDiffusionBarrierPVDTaGlueLayerPVDCuCopperSeedECPCuCVD:CupraSelectTMonTa(100)abinitioMD
simulation
200oC4psCupraSelectTMonTaN(111)&WN(111)TaN(111) WN(111)CuAgglomerationonTaN(111)CuAgglomerationonTaN(111)RuGlueLayerElectronDensityDifferenceTaNWNWithoutRugluelayerWithRu
gluelayerCuCuSuperconductorsAcompoundconductingelectricitywithoutresistancebelowacertaintemperature
Superconductors:Pb(7.2K)Nb3Ge(23.2K)CaSrCu2O4(110K)(Sn5In)Ba4Ca2Cu10Oy(212K)(Tl5Pb2)Ba2MgCu10O17+
(18oC,worldrecord!)magnetic-levitationMRIimagingenergystorageChemistryandEnergyMaterialsHydrocarbonreformingBiomass,coalfiregasification,municipalwastetreatmentSolarcellsEnergylevelalignmentEnergystorageLi-ionbatteriesCathode,anodeandelectrolyteFuelcellsCatalysts,electrodematerialsHydrogenstorageChemistryandEnvironmentalScienceCO2capture,sequestrationandutilizationWatertreatmentGeochemistryAtmospherescience(meteorology,greenhousegas)SustainabledevelopmentChemistryandLifeScienceBiochemistryandbiophysicsStructureofmacromolecules(proteins,DNA,etc.)DrugdiscoveryBiotechnologySynthesisofpharmaceuticalandagrichemicalproductsChemistryandNanoscienceNanosize:10-9mChemicalreactivitydifferstremendouslywithsizes(e.g.Auisinertinbulkphasebutbecomeshighlyreactiveinnanosize)NanocatalysisNanomaterialsChapter5.FrontiersCharacteristicsofModernChemicalScienceMultidisciplinary(chemistry,physics,biology,materialsscience,engineering,etc.)Fundamentalunderstandingofthestructure-propertyrelationshipDesign,discoveryandcreationofnewmoleculesandmaterialsNanotechnologyNanolasers
NanointerconnectNanoporesensorPolymer-CNTcompositeCarbonnanotubesNanocatalysisNano-sizedcatalystsaremoreactiveandmoreefficientCore-shellcatalystsTransparentConductingMaterialsOLEDFlatPanelDisplaySolarCellTouchPanelConductingpolymersMetaloxidenanoparticlesITODopedTiO2,ZnO,SnO2,etc.EffectivenanotechnologyisrequiredtodevelopthinfilmsatlowtemperatureEnergy:TheNextIndustrialRevolution
“Energyisthesinglemostimportantchallengefacinghumanitytoday.”
NobelLaureateRickSmalley April2004,TestimonytoU.S.SenateSustainabilityAsustainablescenario(overalongperiodoftime):
Supply>or=demandThisisadynamicequationToomanyfactorsaffectingtheequilibriumPopulationanditsgrowthrateWarandpeaceResourcesEnvironmentEconomyTechnologiesLifestyleTheBasisofAProsperousEconomyEssential:CapitalWelleducatedpopulationEnergyNon-essential:ResourcesPopulationGrowthvs.GDP&EnergyPopulationgrowthto10-11billionpeoplein2050
PercapitaGDPgrowthat1.6%peryearEnergyconsumptionperunitofGDPdeclinesat1.0%peryearWorldEnergyReserveandDemandMillionsofbarrelsperday(oilequivalent)CO2EmissionConclusionsCurrentenergyconsumptionisNOTsustainableRenewableenergiestofillthegapofenergyreserveanddemandareessentialEnergyefficiencyneedstobesubstantiallyincreasedTechnologiesplayacentralroleinachievingenergysustainabilityRenewableEnergiesSolarWindBiomassHydropowerTide,etc.EnergyEfficiencyBatteriesEnergystorageFuelcellsHydrogenOthersSolarWindBiomassHydroTideRenewableEnergies:TheNextIndustrialRevolutionRenewableenergiesandenergyefficiencyRenewableEnergyPotentialThetotalsolarenergyabsorbedbyatmosphere,oceansandlandmassesisapproximately3,850,000exajoules
(EJ)peryear.In2002,thiswasmoreenergyinonehourthantheworldusedinoneyear!Solar 3,850,000EJWind 2,250EJBiomass 100-300EJPrimaryenergyuse(2010) 539EJElectricity(2010) 66.5EJ1EJ=1018JRenewablesandTheirGrowthGasificationandReformingHightemperaturereforming(600-1100oC):
CxHy+O2
→CO+H2(SyntheticGas)Water-gasshift(250–400oC) CO+H2O→CO2+H2Bothreactionsneedcatalysts!CO2Capture,SequestrationandUtilizationCO2captureoff-sitesisverydifficultCO2captureon-sitesistechnicallyfeasibleCouplingthermodynamicallyendothermicreactionswithCO2conversionfacilitatesCO2utilizationEnergyStorage:KeytoTheSuccessofRenewableEnergiesChemical:Hydrogen,liquidnitrogen,etc.Electrochemical:Batteries,fuelcells,capacitors,etc.Mechanical:Compressedair,gravitationalpotentialenergy,etc.Thermal:Icestorage,moltensalts,etc.EnergyStorage:SmartGridsEnergyStorage:TechnologyNeedsWeneedasuiteofenergystoragetechnologiesforvariousgeological,ecological,social-economicalenvironmentsWeneedawell-balancedportfolioofenergystoragetechnologiesaccountingforefficiency,costs,energydemands,transportation,etc.LowefficiencytechnologydoesnotnecessarilymeaninferiorTheRoleofHydrogenHydrogencanbegeneratedfrombothfossilandrenewablesourcesHydrogencanbeusedasanenergycarrier,notasource,likeelectricityHydrogenpotentiallycanbeusedtodramaticallyenhancetheenergyefficiencyFuelCellsProtonexchangemembranefuelcellsanode:H2
→2H++e-cathode:O2+2e-→2O2-Hightemperaturefuelcellsanode:2H2+2O2–→2H2O+4e–cathode:O2+4e–→2O2–
ThePromiseofHydrogenThelightestelementwiththehighestenergydensityAbundantandpotentiallyunlimitedCleanandefficientconversiontopowerNopollutants–onlywaterasbyproductWhatHasHappenedinthePast10Years?FordHyseriesDrivespec:FuelcellTank:350bar,4.5kgH2Topspeed:~85mphRange:~200milesWhatHasHappenedinthePast10Years?ToyotaFCHV-BUSPolymerelectrolytefuelcell+nickelmetalhydridebatteryTanks:35MPaTopspeed:~80km/hWhatHasHappenedinthePast10Years?BoeingEC-003hydrogen-poweredplaneWeight:800kg(2passengers)H2Tanks:supporta45minutesflightSpeed:~100km/hAltitude:3000ft.WhatHasHappenedinthePast10Years?HYDRA:theworld'sfirstcertifiedFuelCellBoat5kWAFCfuelcellLength:12m,draft:0.52mH2Tanks:33m3
Speed:~4mphCapacity:22passengers(Karl-HeineKanalinLeipzig,Germany,2000)WhatHasHappenedinthePast10Years?GermanyNavy:Type206submarine,SauroclassWeight:1,450tons,surfaced;1,830tons,submergedLength:56m;Draft:6m;Beam:7m9HDW/SiemensPEMfuelcells,30–40kWeach(U31)Speed:37km/hsubmerged;22km/hsurfaced.Range:14,800km,3weekswithoutsnorkeling(Karl-HeineKanalinLeipzig,Germany,2000)WhatHasHappenedinthePast10Years?BMW:Hydrogen7V12engine:runningonbothpremiumgasolineandH2fuelPoweroutput:191kw(256hp);to100km/h:9.5secondsH2tank:8kg(18lbs.)liquidhydrogenRange:125miles(byH2)and300miles(bygasoline)atcruisingspeedsBMWHydrogen7UTCFuelCellsPC25sinAnchorage,AlaskaFivefuelcellsprovidealltheelectricalpowertothemainpostalsortingfacilityWhatHasHappenedinthePast10Years?InfrastructureTrunks:6,000-9,000gallonliquidgasolinecapacityHydrogenHighwayEurope:Germany,Italy,Norway,Scandinavia,Sweden,Denmark,SpainAmerica:Canada,USA(California,Florida,Eastcoast),Asia:JapanEuropeanUnionHydrogenHighway
FractionoftotalnewvehiclesalesPenetrationCurvesforFuelCellVehicles
CompletereplacementofICEvehicleswithfuelcellvehiclesin2050FractionoftotalvehiclemilesPenetrationCurvesforFuelCellVehiclesSourceofhydrogen:limitedwithfossilfuelsbutpotentiallyunlimitedwithwaterHydrogenstorageanddelivery:tooexpensiveandhighlyinefficientHighcapacityandhighreversibilityAmbientconditionstorageanddeliveryLowtemperaturewellcontrolledH2releaseFuelcells:tooexpensiveandshortlifespanInfrastructure:extremelyexpensiveGrandChallengesofH2EconomyWorldwideconsumption:50Mtonsperyearin2004,growingatabout10%peryear.UsedforpetroleumrefineriestoconvertlowgradecrudeoilsintotransportfuelsandforfertilizerproductionAccordingtotheU.S.DepartmentofEnergy,theU.S.produces9MtonsofH2in2005,enoughtofuelmorethan34Mcars(~0.7kg/car/dayonaverage,drivingforapproximately60kmperday)Thereareapproximately247Mvehicles(cars,busesandtrucks)intheU.S.in2007.TheU.S.alonewillneedtoincreaseH2productionbyatleast10timestofueltheH2economy.Thiswouldproduceabout500MtonsCO2peryear(assumingH2isproducedviaSMR),whichisarelativelysmallnumbercomparedtooverallCO2releaseInChina,therewereonly5.54Mvehiclesontheroadin1990butthenumberofvehiclesincreasedto70Min2010andby2020willexceed200M.HydrogenProductionSteammethanereform(~95%H2production)CH4+H2O→CO+H2,49.3kcal/mol(700-1000oC)CO+H2O→CO2+H2,-9.9kcal/mol(200-350oC)For1moleH2,¼moleCO2isgenerated,~1:5.5inweightratioOnsiteCO2capturecanberealizedbutonboardCO2captureisalmostimpossibleHydrogenproductionfrombiomass,oil,municipalwastesandcoalgasificationmayutilizesimilarprocessesHydrogenProduction:SteamReformPartialoxidationCH4+O2→CO+H2, -8.5kcal/molCO+H2O→CO2+H2, -9.9kcal/molCO2captureHydrogenproductionfrombiomass,oil,municipalwastesandcoalgasificationmayutilizesimilarprocessesHydrogenProduction:PartialOxidationElectrolysisofwater,usingoff-peakcapacityUseofnuclearheattoassiststeamreformingofnaturalgasupto900oC
High-temperatureelectrolysisofsteam,usingheatandelectricityfromnuclearreactorsHigh-temperaturethermochemicalproductionusingnuclearheatHydrogenProductionfromNuclearPowerBiomassconversion(thermochemical,photocatalytic,etc.)Solarconversion(watersplitting)Wind(electrolysis)Hydropower(el
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西老区职业技术学院《流行歌曲演唱》2023-2024学年第一学期期末试卷
- 中国海洋大学《微体古生物学》2023-2024学年第二学期期末试卷
- 山东师范大学《建筑材料实验》2023-2024学年第二学期期末试卷
- 江苏食品药品职业技术学院《微波遥感基础》2023-2024学年第二学期期末试卷
- 绥化学院《中国古代文学B》2023-2024学年第一学期期末试卷
- 电子竞技赛事运营合同
- 建筑工程劳务居间合同
- 屋面彩瓦工程承包合同
- 微商代理销售合同
- 对赌协议合同合同书
- 青岛商场分级管理制度
- 广东省历年中考作文题(2000-2023)
- 古代汉语-形考任务1-3-国开-参考资料
- 工业废水处理技术作业指导书
- 体检中心质量控制指南
- 《预防未成年人犯罪》课件(图文)
- 煤矿岗位标准化作业流程
- 全国网信系统网络安全协调指挥技术系统建设指南
- 《幼儿安全》·铅笔不能咬PPT课件
- 坊子实验小学《学情会商制度》
- 潘通色卡电子版
评论
0/150
提交评论