




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
关于全等三角形判定和第1页,讲稿共28页,2023年5月2日,星期三两边和它们的夹角对应相等的两个三角形全等.(SAS)两角一边呢复习回顾:
我们前面学习了哪几种判定三角形全等的方法SASSSS第2页,讲稿共28页,2023年5月2日,星期三继续探讨三角形全等的条件:两角一边思考:已知一个三角形的两个角和一条边,那么两个角与这条边的位置上有几种可能性呢?ABCABC图1图2在图1中,边AB是∠A与∠B的夹边,在图2中,边BC是∠A的对边,
我们称这种位置关系为两角夹边
我们称这种位置关系为两角及其中一角的对边。第3页,讲稿共28页,2023年5月2日,星期三
二、合作探究
(一)探究一:已知两个角和一条线段,以这两个角为内角,以这条线段为这两个角的夹边,画一个三角形.
把你画的三角形与小组其他组员画的三角形进行比较,所有的三角形都全等吗?都全等45°30°3cm换两个角和一条线段,试试看,是否有同样的结论.第4页,讲稿共28页,2023年5月2日,星期三如何用符号语言来表达呢?证明:在△ABC与△ABC中∠A=∠AAB=AB∴△ABC≌△A’B’C’(ASA)ACBA′CB′′′′′′′′∠B=∠B′两角和它们的夹边分别相等的两个三角形全等(ASA).第5页,讲稿共28页,2023年5月2日,星期三在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC和△DEF全等吗?为什么?ACBEDF探索分析:能否转化为ASA?证明:∵∠A=∠D,∠B=∠E(已知)
∴∠C=∠F(三角形内角和定理)∠B=∠E在△ABC和△DEF中BC=EF∠C=∠F∴△ABC≌△DEF(ASA)你能从上题中得到什么结论?两角及一角的对边对应相等的两个三角形全等(AAS)。第6页,讲稿共28页,2023年5月2日,星期三如何用符号语言来表达呢?证明:在△ABC与△ABC中∠A=∠A∴△ABC≌△A’B’C’(AAS)ACBA′CB′′′′′′∠B=∠B′′′BC=BC第7页,讲稿共28页,2023年5月2日,星期三判定3:两角和它们的夹边分别相等的两个三角形全等,简写成“角边角”或“ASA”。判定4:两角和其中一角的对边分别相等的两个三角形全等,简写成“角角边”或“AAS”(ASA)(AAS)归纳第8页,讲稿共28页,2023年5月2日,星期三判定三角形全等你有哪些方法?(ASA)(AAS)(SAS)(SSS)第9页,讲稿共28页,2023年5月2日,星期三下列条件能否判定△ABC≌△DEF.(1)∠A=∠EAB=EF∠B=∠D(2)∠A=∠DAB=DE∠B=∠E试一试请先画图试试看第10页,讲稿共28页,2023年5月2日,星期三如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗?如果可以,带哪块去合适?你能说明其中理由吗?解决玻璃问题怎么办?可以帮帮我吗?AB利用“角边角定理”可知,带B块去,可以配到一个与原来全等的三角形玻璃。第11页,讲稿共28页,2023年5月2日,星期三考考你1、如图,已知AB=DE,∠A=∠D,,∠B=∠E,则△ABC≌△DEF的理由是:2、如图,已知AB=DE,∠A=∠D,,∠C=∠F,则△ABC≌△DEF的理由是:ABCDEF角边角(ASA)角角边(AAS)第12页,讲稿共28页,2023年5月2日,星期三例1、如图,AB=AC,∠B=∠C,那么△ABE和△ACD全等吗?为什么?证明:在△ABE与△ACD中∠B=∠C(已知)AB=AC(已知)∠A=∠A(公共角)
∴△ABE≌△ACD(ASA)
AEDCB第13页,讲稿共28页,2023年5月2日,星期三1.如图,AD=AE,∠B=∠C,那么BE和CD相等么?为什么?证明:在△ABE与△ACD中∠B=∠C(已知)∠A=∠A(公共角)AE=AD(已知)∴△ABE≌△ACD(AAS)∴BE=CD
(全等三角形对应边相等)AEDCB变一变BE=CD你还能得出其他什么结论?O第14页,讲稿共28页,2023年5月2日,星期三例2.如图,O是AB的中点,=,与全等吗?为什么?两角和夹边对应相等第15页,讲稿共28页,2023年5月2日,星期三ABCDO1234如图:已知∠ABC=∠DCB,∠3=∠4,求证:(1)△ABC≌△DCB。(2)∠1=∠2例3第16页,讲稿共28页,2023年5月2日,星期三练习1已知:如图,AB=A′C
,∠A=∠A′,∠B=∠C求证:△ABE≌△A′
CD________()________()________()
证明:在
和
中∴△____≌△____()∠A=∠A’已知AB=A’C已知∠B=∠C已知ABEA’CDASA△ABE△A’CD第17页,讲稿共28页,2023年5月2日,星期三1、如图:已知AB∥DE,AC∥DF,BE=CF。求证:△ABC≌△DEF。ABCDEF考考你证明:∵BE=CF(已知)
∴BC=EF(等式性质)∠B=∠E在△ABC和△DEF中BC=EF∠C=∠F∴△ABC≌△DEF(ASA)∵AB∥DEAC∥DF
(已知)
∴∠B=∠DEF,∠ACB=∠F第18页,讲稿共28页,2023年5月2日,星期三ABCDEF1、如图∠ACB=∠DFE,BC=EF,那么应补充一个条件-------------------------,才能使△ABC≌△DEF(写出一个即可)。∠B=∠E或∠A=∠D或AC=DF你能行吗?(ASA)(AAS)(SAS)AB=DE可以吗?×AB∥DE第19页,讲稿共28页,2023年5月2日,星期三∠A=∠D(已知)AB=DE(已知)∠B=∠E(已知)在△ABC和△DEF中∴△ABC≌△DEF(ASA)
有两角和它们夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”)。用符号语言表达为:FEDCBA三角形全等判定方法3知识梳理:第20页,讲稿共28页,2023年5月2日,星期三知识梳理:
思考:在△ABC和△DFE中,当∠A=∠D,∠C=∠F和AB=DE时,能否得到△ABC≌△DFE?三角形全等判定方法4
有两角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角边角”或“AAS”)。第21页,讲稿共28页,2023年5月2日,星期三小结(1)两角和它们的夹边对应相等的两个三角形全等.简写成“角边角”或“ASA”.(2)两角和其中一角的对边对应相等的两个三角形全等.简写成“角角边”或“AAS”.知识要点:(3)探索三角形全等是证明线段相等(对应边相等),角相等(对应角相等)等问题的基本途径。数学思想:要学会用分类的思想,转化的思想解决问题。第22页,讲稿共28页,2023年5月2日,星期三1、如图,BE=CD,∠1=∠2,则AB=AC.请说明理由。CAB12ED拓展与提高第23页,讲稿共28页,2023年5月2日,星期三2已知和中,=,AB=AC.求证:(1)(3)BD=CE证明:,ACDABEDDQ中和在(2)AE=AD(全等三角形对应边相等)ACAB=Q(已知)(已知)(公共角)(等式的性质)第24页,讲稿共28页,2023年5月2日,星期三第25页,讲稿共28页,2023年5月2日,星期三ABCDE124、如图,已知∠C=∠E,∠1=∠2,AB=AD,△ABC和△ADE全等吗?为什么?解:△ABC和△ADE全等。∵∠1=∠2(已知)∴∠1+∠DAC=∠2+∠DAC即∠BAC=∠DAE在△ABC和△ADC
中∴△ABC≌△ADE(AAS)第26页,讲稿共28页,2023年5月2日,星期三DCBA5、在△ABC中,AB=AC,AD是边BC上的中线,证明:∠BAD=∠CAD证明:∵AD是BC边上的中线∴BD=CD(三角形中线的定义)在△ABD和△ACD中∴△ABD≌△ACD(SSS)∴∠B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设施水产养殖企业数字化转型与智慧升级战略研究报告
- 石化行业用钝化剂企业数字化转型与智慧升级战略研究报告
- 向心涡轮定轴式企业数字化转型与智慧升级战略研究报告
- 自动驾驶传感器企业县域市场拓展与下沉战略研究报告
- 脚踏自行车企业县域市场拓展与下沉战略研究报告
- 喷水推进器企业ESG实践与创新战略研究报告
- 刺绣工艺品企业县域市场拓展与下沉战略研究报告
- 石英玻璃烧瓶企业ESG实践与创新战略研究报告
- 新能源液压试验台企业数字化转型与智慧升级战略研究报告
- 25年企业管理人员安全培训考试试题及答案考试直接用
- 离职体检免责协议书
- 光电工程师需掌握的常用计算试题及答案
- 烟草证借用合同范本
- 烧烫伤培训课件
- 3D打印在康复辅具中的应用-全面剖析
- 煤矿重大事故隐患判定标准解读与查找方法山西应急管理厅培训课件
- 县级安全生产大讲堂课件
- 工业废水处理工考核要素细目表与考核内容结构表(征求意见稿)
- 北京市门头沟区2025届高三一模考试生物试题(原卷版+解析版)
- 有限合伙制私募股权基金整体框架图解及案例
- 2025年中小学教师资格考试题库大全及答案
评论
0/150
提交评论