河北省唐山市遵化夏庄子中学高一数学文模拟试题含解析_第1页
河北省唐山市遵化夏庄子中学高一数学文模拟试题含解析_第2页
河北省唐山市遵化夏庄子中学高一数学文模拟试题含解析_第3页
河北省唐山市遵化夏庄子中学高一数学文模拟试题含解析_第4页
河北省唐山市遵化夏庄子中学高一数学文模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省唐山市遵化夏庄子中学高一数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数f(x)=log3x-8+2x的零点一定位于区间A.(5,6) B.(3,4) C.(2,3) D.(1,2)参考答案:B试题分析:根据零点存在性定理,因为,所以函数零点在区间(3,4)内,故选择B考点:零点存在性定理2.函数是定义在上的奇函数,当

时,得图象如图所示,那么不等式的解集是(

A.∪(0,1)

B.∪(0,1)

C.(1,3)∪

D.∪参考答案:A略3.设△ABC的内角A、B、C所对边分别为a、b、c,若a=3,b=,A=,则B=()A. B.或 C. D.或参考答案:A【分析】由已知利用正弦定理可求的值,利用大边对大角可求为锐角,利用特殊角的三角函数值,即可得解.【详解】由题意知,由正弦定理,可得==,又因为,可得B为锐角,所以.故选:A.【点睛】本题主要考查了正弦定理,大边对大角,特殊角的三角函数值在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.4.如图所示,为测一树的高度,在地面上选取A、B两点,从A、B两点分别测得树尖的仰角为30°,45°,且A、B两点间的距离为60m,则树的高度为()A. B. C. D.参考答案:A【考点】HU:解三角形的实际应用.【分析】要求树的高度,需求PB长度,要求PB的长度,在△PAB由正弦定理可得.【解答】解:在△PAB,∠PAB=30°,∠APB=15°,AB=60,sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=×﹣×=由正弦定理得:,∴PB==30(+),∴树的高度为PBsin45°=30(+)×=(30+30)m,答:树的高度为(30+30)m.故选A5.已知边长为2的正方形ABCD的四个顶点在球O的球面上,球O的体积为V球=,则OA与平面ABCD所成的角的余弦值为()A. B. C. D.参考答案:A【考点】MI:直线与平面所成的角.【分析】过球心O作平面ABCD的垂线OG,则G为正方形中心,∠OAG为OA与平面ABCD所成的角,求出球的半径OA,再求出AG,即可得出所求角的余弦值.【解答】解:如图,设球O的半径为R,由V球==,得,∴R=,即OA=.设正方形ABCD的中心为G,连接OG,则OG⊥平面ABCD,且AG=.∴OA与平面ABCD所成的角的余弦值为.故选:A.6.设函数与的图象的交点为,则所在的区间是(

)A.

B.

C.

D.参考答案:B7.已知lgx+lgy=2lg(x-2y),则log的值

)A.2

B.2或0

C.4

D.4或0参考答案:C8.函数上的最大值与最小值的和为3,则的值是(

A.

B.2 C.4 D.参考答案:B9.设是(0,+∞)上的增函数,当时,,且,则

(A)

(B)

(C)

(D)参考答案:B略10.正三棱锥V-ABC的底面边长为,E,F,G,H分别是VA,VB,BC,AC的中点,则四边形EFGH的面积的取值范围是(

)A.

B.

C.

D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.口袋内装有100个大小相同的红球、白球和黑球,其中有45个红球;从中摸出1个球,若摸出白球的概率为0.23,则摸出黑球的概率为_________

。参考答案:0.32略12.已知两个向量满足且与的夹角为,若向量与向量的夹角为钝角,则实数的取值范围是______________________参考答案:解析:由两向量的夹角为钝角知,则即即又当时,和方向相反,故,所以的取值范围是13.(8分)(1)已知函数f(x)=|x﹣3|+1,g(x)=kx,若函数F(x)=f(x)﹣g(x)有两个零点,求k的范围.(2)函数h(x)=,m(x)=2x+b,若方程h(x)=m(x)有两个不等的实根,求b的取值范围.参考答案:考点: 函数的零点与方程根的关系.专题: 函数的性质及应用.分析: (1)画出两个函数f(x)=|x﹣3|+1,g(x)=kx,的图象,利用函数F(x)=f(x)﹣g(x)有两个零点,即可求k的范围.(2)函数h(x)=,m(x)=2x+b,方程h(x)=m(x)有两个不等的实根,画出图象,利用圆的切线关系求出b的取值范围.解答: (1)因为函数F(x)=f(x)﹣g(x)有两个零点,即f(x)=g(x)有两个不等的实根即函数f(x)=|x﹣3|+1与g(x)=kx,有两个不同的交点.由图象得k的范围.是().(2)由h(x)=,得x2+y2=4(y≥0)即图形是以(0,0)为圆心,以2为半径的上半圆,若方程h(x)=m(x)有两个不等的实根,即两图象有两个不同的交点,当直线m(x)=2x+b,过(﹣2,0)时,b=4有两个交点,当直线与圆相切时=2,可得b=2,b=﹣2(舍去)b的取值范围[2,2).点评: 本题考查函数与方程的应用,考查数形结合,直线与圆的位置关系,考查分析问题解决问题的能力.14.,则的最小值是

.参考答案:25略15.已知集合,集合,若,那么____参考答案:0或1或-116.函数的对称中心为参考答案:17.已知且对任何,都有:①,②,给出以下三个结论:(1);(2);(3),其中正确的是________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(10分)某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.(1)设一次订购x件,服装的实际出厂单价为p元,写出函数p=f(x)的表达式;(2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?参考答案:考点: 函数模型的选择与应用;二次函数在闭区间上的最值.专题: 应用题.分析: (1)根据题意,函数为分段函数,当0<x≤100时,p=60;当100<x≤600时,p=60﹣(x﹣100)×0.02=62﹣0.02x.(2)设利润为y元,则当0<x≤100时,y=60x﹣40x=20x;当100<x≤600时,y=(62﹣0.02x)x﹣40x=22x﹣0.02x2,分别求出各段上的最大值,比较即可得到结论.解答: (1)当0<x≤100时,p=60;当100<x≤600时,p=60﹣(x﹣100)×0.02=62﹣0.02x.∴p=(2)设利润为y元,则当0<x≤100时,y=60x﹣40x=20x;当100<x≤600时,y=(62﹣0.02x)x﹣40x=22x﹣0.02x2.∴y=当0<x≤100时,y=20x是单调增函数,当x=100时,y最大,此时y=20×100=2000;当100<x≤600时,y=22x﹣0.02x2=﹣0.02(x﹣550)2+6050,∴当x=550时,y最大,此时y=6050.显然6050>2000.所以当一次订购550件时,利润最大,最大利润为6050元.点评: 本题考查分段函数,考查函数的最值,解题的关键是正确写出分段函数的解析式,属于中档题.19.(本小题满分12分)如图所示,两点是函数()图象上相邻的两个最高点,点为函数图象与轴的一个交点.(Ⅰ)若,求在区间上的值域;(Ⅱ)若,求的值.参考答案:见解析【知识点】三角函数图像变换【试题解析】(Ⅰ)由题意,

因为,所以.所以.

所以.

所以,

函数的值域为.

(Ⅱ)由已知,,,

所以,.

因为,所以,,解得.

又,所以.20.已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若对任意m,n∈[﹣1,1],m+n≠0,都有.(1)用定义证明函数f(x)在定义域上是增函数;(2)若,求实数a的取值范围;(3)若不等式f(x)≤(1﹣2a)t+2对所有和x∈[﹣1,1],a∈[﹣1,1]都恒成立,求实数t的取值范围.参考答案:【考点】函数恒成立问题;函数奇偶性的性质.【分析】(1)令﹣1≤x1<x2≤1,作差f(x1)﹣f(x2)后化积可判断f(x1)﹣f(x2)<0,从而可证明函数f(x)在定义域上是增函数;(2)利用奇函数在[﹣1,1]上单调递增可得,?解之即可求得实数a的取值范围;(3)由(1)知f(x)max≤(1﹣2a)t+2对任意a∈[﹣1,1]都恒成立?1≤﹣2ta+t+2对任意a∈[﹣1,1]恒成立,可求得实数t的取值范围.【解答】证明:(1)设任意x1,x2满足﹣1≤x1<x2≤1,由题意可得,∴f(x)在定义域[﹣1,1]上位增函数;解:(2)由(1)知,∴即a的取值范围为;(3)由(1)知f(x)max≤(1﹣2a)t+2对任意a∈[﹣1,1]都恒成立,即1≤﹣2ta+t+2对任意a∈[﹣1,1]都恒成立,∴,即t的取值范围为.21.已知定义域为R的函数是奇函数.(1)求a、b的值;(2)判断并证明f(x)的单调性;(3)若对任意的x∈R,不等式f(x2-x)+f(2x2-t)<0恒成立,求t的取值范围.参考答案:解:(1)∵f(x)是奇函数且0∈R,∴f(0)=0即……1分∴又由f(1)=-f(-1)知a=2……………2分∴f(x)=(2)f(x)在(-∞,+∞)上为减函数………3分证明如下:设x1,x2∈(-∞,+∞)且x1<x2

·∵y=2x在(-∞,+∞)上为增函数且x1<x2,∴且y=2x>0恒成立,∴∴f(x1)-f(x2)>0

即f(x1)>f(x2)∴f(x)在(-∞,+∞)上为减函数………7分(3)∵f(x)是奇函数f(x2-x)+f(2x2-t)<0等价于f(x2-x)<-f(2x2-t)=f(-2x2+t)……8分又∵f(x)是减函数,∴x2-x>-2x2+t即一切x∈R,3x2-x-t>0恒成立

……………………9分∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论