版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
回归分析数学建模回归分析引言
回归分析是处理很难用一种精确方法表示出来的变量之间关系的一种数学方法,它是最常用的数理统计方法,能解决预测、控制、生产工艺优化等问题。它在工农业生产和科学研究各个领域中均有广泛的应用。回归分析一般分为线性回归分析和非线性回归分析。本节着重介绍线性回归分析的基本结论及其在Matlab中的相应命令。线性回归分析是两类回归分析中较简单的一类,也是应用较多的一类。数学建模回归分析一一元线性回归分析
针对一组(二维)数据(其中互不相同),其最简单的数据拟合形式为寻求直线,使在最小二乘准则下与所有数据点最为接近。但由于随机观测误差的存在,满足上述数据点的直线应该是
(1.1)
其中x,y是准确的,是两个未知参数,是均值为零的随机观测误差,具有不可观测性,可以合理地假设这种观测误差服从正态分布。数学建模回归分析
于是我们得到一元线性回归模型为
(1.2)
其中未知,固定的未知参数称为回归系数,自变量x称为回归变量。
(1.1)式两边同时取期望得:称为y对x的回归直线方程。在该模型下,第i个观测值可以看作样本(这些样本相互独立但不同分布,i=1,2,…,n)的实际抽样值,即样本值。数学建模回归分析
一元线性回归分析的主要任务是:a.用实验值(样本值)对作点估计;b.对回归系数作假设检验;c.在处对y作预测,并对y作区间估计。1、回归参数估计假设有n组独立观测值:则由(1.2)有(1.3)数学建模回归分析其中相互独立。记称为偏离真实直线的偏差平方和。由最小二乘法得到的估计称为的最小二乘估计,其中(经验)回归方程为(1.4)数学建模回归分析这样我们得到的无偏估计,其中服从正态分布数学建模回归分析2模型的假设、预测、控制1、回归方程的显著性检验在实际问题中,因变量y与自变量x之间是否有线性关系(1.1)只是一种假设,在求出回归方程之后,还必须对这种回归方程同实际观测数据拟合的效果进行检验。由(1.1)可知,越大,y随x变化的趋势就越明显;反之,越小,y随x变化的趋势就越不明显。特别当=0时,则认为y与x之间不存在线性关系,当时,则认为y与x之间有线性关系。因此,问题归结为对假设进行检验。数学建模回归分析
假设:被拒绝,则回归显著,认为y与x之间存在线性关系,所求的线性回归方程有意义;否则回归不显著,y与x的关系不能用一元线性回归模型来描述,所得的回归方程也无意义。此时,可能有如下几种情况:(1)x对y没有显著影响,此时应丢掉变量x;(2)x对y有显著影响,但这种影响不能用线性关系来表示,应该用非线性回归;(3)除x之外,还有其他不可忽略的变量对y有显著影响,从而削弱了x对y的影响。此时应用
多元线性回归模型。因此,在接受H0的同时,需要进一步查明原因以便分别处理。数学建模回归分析检验方法:(a)F检验法对样本方差进行分解,有上式中的是由实际观测值没有落在回归直线上引起的(否则为零),U是由回归直线引起的。因此,U越大,就越小,表示y与x的线性关系就越显著;否则,U越小,就越大,表示y与x的线性关系就越不显著。这样我们就找到了一种判别回归直线拟合程度好坏的方法:如果U/s接近于1,即U/
较大时,则对拟合效果感到满意。数学建模回归分析由F分布有其中r称为相关系数。对给定的显著水平a,有置信水平为1-a的临界值,从而F检验法的检验准则为:当时,拒绝;否则就接受数学建模回归分析(b)t检验法当成立时,由T分布的定义有因此,对于给定的显著水平a,用T统计量检验,有置信水平为1-a的临界值,从而t检验法的检验准则为:当时,拒绝;否则就接受数学建模回归分析2、预测与控制当检验结果拒绝了:,接下来的问题是如何利用回归方程
进行预测和控制。预测就是对固定的x值预测相应的y值,控制就是通过控制x的值,以便把y的值控制在制定的范围内。(a)预测设y与x满足模型(1.2)。令
表示x的某个固定值,且假设相互独立,则的预测值和预测区间如下。数学建模回归分析y的预测值为的回归值。它是
的无偏估计,即给定显著水平,的置信水平为1-的预测区间为,其中由上式可知,剩余标准差越小,预测区间越小,预测值越精确;对于给定的样本观测值和置信水平而言,越靠近时,预测精度就越高。数学建模回归分析(b)控制若要的值以1-的概率落在指定区间(c,d)之内,变量x应控制在什么范围内的问题就是所谓的控制问题。它是预测问题的反问题。只要控制x满足以下两不等式这要求若方程分别有解a,b,则(a,b)就是所求的x的控制区间。数学建模回归分析二可线性化的一元非线性回归(曲线回归)
在工程技术中,自变量x与因变量y之间有时呈现出非线性(或曲线)关系,这是通常出现两种情况:一种是呈现多项式的关系,这种情况通过变量替换可化为多元线性回归问题给予解决;另一种是呈现出其它非线性关系,通过变量替换可化为一元线性回归问题给予解决。若匹配曲线(经验公式)为含参量a,b的非线性曲线,采用的办法是通过变量替换把非线性回归化为线性回归。通常匹配的含参量a,b的非线性曲线有以下六类,具体的替换方法如下:数学建模回归分析1双曲线作变量替换
得
2幂函数曲线两边取常用对数:,再作代换则幂函数曲线方程就变成直线方程注:对于非线性回归问题的Matlab实现问题,一种方法是化为相应的线性模型实现,另种方法是直接应用Matlab中相应的命令,其结果是一致的。数学建模回归分析三多元线性回归分析一般地,在实际问题中影响应变量y的自变量往往不止一个,不妨设有k个为。通过观测得到一组(k+1维)相互独立的试验观测数据,其中n>k+1。假设变量y与变量之间有线性关系:
(1.5)
其中是随机变量,一般假设则观测数据满足
(1.6)数学建模回归分析其中互不相关且均是与同分布的随机变量。令则(1.6)可简写为其中X为已知的n*(k+1)矩阵,称为回归设计矩阵或资料矩阵,Y是n维观察值列向量,为k+1维未知的列向量,是满足的n维随机列向量.数学建模回归分析一般称
(1.7)
为k线性回归模型(高斯—马尔科夫线性模型)对(1.7)取数学期望得到称为线性回归方程。数学建模回归分析
对线性模型所要考虑的主要问题是:(i)用实验观测数据对未知参数做点估计和假设检验,从而建立因变量y和自变量之间的线性关系;(ii)在处对y的值作预测和控制,并对y作区间估计。本部分总是假设
n>k+1。
(具体方法略)数学建模回归分析四、逐步线性回归分析
逐步线性回归分析方法就是一种自动从大量可供选择的变量中选择那些对建立回归方程比较重要的变量的方法,它是在多元线性回归基础上派生的一种算法技巧,详可参阅相应的文献。其基本思路为:从一个自变量开始,视自变量对y作用的显著程度,从大到小依次逐个引入回归方程。当引入的自变量由于后面自变量的引入而变得不显著时,要将其剔除掉。引入一个自变量或从回归方程中剔除一个自变量,为逐步回归的一步。对于每一步,都要进行y值检验,以确保每次引入新的显著性变量前回归方程中只包含对y作用显著的变量。这个过程反复进行,直至即无不显著的变量从回归方程中剔除,又无显著变量可引入回归方程止。数学建模回归分析五回归分析的Matlab实现Matlab统计工具箱中提供了一些回归分析的命令,现介绍如下。1、多元线性回归多元线性回归的命令是regress,此命令也可用于一元线性回归。其格式为:(1)确定回归系数的点估计,用命令:
b=regress(Y,X)。(2)求回归系数的点估计和区间估计,并检验回归模型,用命令:[b,bint,r,rint,stats]=regress(Y,X,alpha)。(3)画出残差及其置信区间,用命令:
rcoplot(r,rint)。数学建模回归分析在上述命令中,各符号的含义为:(i),Y,X的定义同本部分前面所述。对一元线性回归,在,Y,X中取k=1即可;(ii)alpha为显著性水平(缺省时为0.05);(iii)bint为回归系数的区间估计;(iv)r与rint分别为残差及其置信区间;(v)stats是用于检验回归模型的统计量,有三个数值,第一个是,第二个是F值,第三个是与F对应的概率P。其中与F定义同前,值越大,说明回归方程越显著,P<a(0.01或0.05)
时拒绝,回归模型成立。数学建模回归分析例1合金的强度y与其中的碳含量x有比较密切的关系,今从生产中收集了一批数据如下表。试先拟合一个函数y(x),再用回归分析对它进行检验。x0.100.110.120.130.140.150.160.170.18y42.041.545.045.545.047.549.055.050.0解先画出散点图:x=0.10:0.01:0.18;y=[42.0,41.5,45.0,45.5,45.0,47.5,49.0,55.0,50.0];plot(x,y,'+')可知y与x大致为线性关系。设回归模型为,用regress和rcoplot编程如下:clc,clearx1=[0.10:0.01:0.18];y=[42.0,41.5,45.0,45.5,45.0,47.5,49.0,55.0,50.0];x=[ones(9,1),x1’];[b,bint,r,rint,stats]=regress(y’,x);b,bint,stats,rcoplot(r,rint)数学建模回归分析数学建模回归分析得到b=27.4722137.5000bint=18.685136.259475.7755199.2245stats=0.798527.74690.0012即=27.4722,=137.5000,的置信区[18.6851,36.2594],的置信区间是[75.7755,199.2245];R2=0.7985,F=27.7469,p=0.0012。可知所设回归模型成立。观察命令rcoplot(r,rint)所画的残差分布,除第8个数据外其余残差的置信区间均包含零点,第8个点应视为异常点,将其剔除后重新计算,可得b=30.7280109.3985bint=26.280535.283476.9014141.8955stats=0.918867.85340.0002应该用修改后的这个结果。数学建模回归分析数学建模回归分析2、多元二项式回归多元二项式回归可用命令:rstool(x,y,model,alpha)。其中,输入数据x、y分别为n×m矩阵和n维列向量;alpha为显著性水平(缺省时为0.05);model由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):purequadratic(纯二次):interaction(交叉):quadratic(完全二次):数学建模回归分析3、非线性回归非线性回归可用命令nlinfit,nlintool,nlparci,nlpredci来实现。命令格式如下:回归:回归可用命令
[beta,r,J]=nlinfit(x,y,model,beta0)或者nlintool(x,y,model,beta0,alpha)来实现。其中命令[beta,r,J]=nlinfit(x,y,model,beta0)的作用为确定回归系数;而命令nlintool(x,y,model,beta0,alpha)产生一个交互式的画面,画面中有拟合曲线和y的置信区间。通过左下方的Export下拉式菜单,可以输出回归系数等。数学建模回归分析
这里的输入数据x、y分别为n×m矩阵和n维列向量,对一元非线性回归,x为n维列向量;
mo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 5年级下册第26课教学课件教学
- 人教版九年级化学第二单元我们周围的空气实验活动1氧气的实验室制取与性质课件
- 2024年度钢管市场调查与竞争对手分析承包合同
- 技术授权合同范本 2篇
- 小学一年级家长培训
- 淋巴瘤主要护理问题
- 《物料管理》课件
- 2024年度技术服务合同:云计算服务的提供与维护3篇
- 仁爱版七年级上册英语全册教案(供参考)
- 2024版医疗信息技术服务合同
- 水稻碳足迹评价技术指南
- 工会跳棋活动方案
- 新高考英语读后续写技巧与训练:助人类20篇
- 规范开展学术活动管理制度
- 建设工程监理职业生涯规划
- 冻酸奶市场洞察报告
- 胎儿肛门闭锁个案护理
- 成都YC公司创业计划书
- 2022年全国统一高考化学试卷和答案解析(全国甲卷)
- 企业退税申请报告范文
- 平行结转分步法
评论
0/150
提交评论