分数除法数学教学反思_第1页
分数除法数学教学反思_第2页
分数除法数学教学反思_第3页
分数除法数学教学反思_第4页
分数除法数学教学反思_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

分数除法数学教学反思分数除法数学教学反思

作为一位刚到岗的教师,教学是重要的工作之一,写教学反思能总结教学过程中的很多讲课技巧,我们该怎么去写教学反思呢?以下是我为大家整理的分数除法数学教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。分数除法数学教学反思1

今天的教学与分数意义的学习在孩子们头脑中产生了强烈的矛盾冲突。前几天的分数都表示谁占谁的几分之几(即分率),可今天求的却是具体数量。特别是例2,虽然运用学具让所有学生参与到知识的探索过程中,但仍旧感觉推进艰难。学生困惑点主要在以下两方面:

1、为什么把3块月饼看作单位“1”,平均分成4份,取其中1份不是1/4?

2、通过操作,结果明明是将单位“1”平均分成12块,取出其中的3块,为什么不能用3/12块表示呢?

针对上述两个问题,我在教学中主要采取了以下一些策略:

1、复习环节巧铺垫。

在复习导入中增加一道用分数表示阴影部分的练习。其中一幅图是圆的3/4,另一幅图是圆的3/12。这样,当学生困惑于例题3/4块和3/12块结果时,就能通过直观图,前后呼应,使学生豁然开朗。

2、审题过程藏玄机。

在教学例2请学生读题后,首先请学生思考“3块月饼4人平均分,每人能得到一整块月饼吗?”然后用语言暗示“每人分不到一块月饼,那到底能分得一块月饼的几分之几呢?请同学们用圆形纸片代替月饼,实际动手分一分,看看分得多少块?”有了每人分不到一块月饼的提示,又有了“到底能分得一块月饼的几分之几”的暗示,学生探索的落脚点定位到了以一块月饼为单位“1”,且初步理解了问题是求数量“块”而非部分与整体之间的关系。

通过上述改进措施,学生理解3/4相对容易一些。分数除法数学教学反思2

分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下两方面考虑:

1.以解决问题入手,感受分数的价值。

从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。

2.分数意义的拓展与除法之间关系的理解同步。

当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。

反思这节课,在这一过程中,我在教学之前认为分数与除法的关系很简单,而在实际教学时发现并不是一个简单的问题。因此我把重点放在例2上:3÷4=()(块)的探究上。学生在理解的时候,还真的很难得到3÷4=()(块),开始都猜想是,然后通过动手小组去操作,经历验证猜想的过程中,学生汇报中出现了是1/4,因为他们认为是把3饼看作单位“1”平均分成4份。每人就得了1/4……说明学生在操作中在思考了,同时也暴露出了学生在分数意义的理解上出了问题,问题在哪里呢?出在把谁看作单位“1”上,问题在对分数意义的理解上,这是难点。学生认为简单,实际上不简单,因此我们的教学必须重视学生的说理和交流。把重点放在3÷4=()(块)上,我借助的是学生的动手操作,采取让学生之间的互相交流和辩论解决了学生认识上的难点。把重点放在3÷4=()(块)上,需要注意的是:在指导过程中,不能讲得太多,讲得过多,学生会越来越不清楚。

从分数与除法的关系这个内容的教学我发现:学生的例子太少,没有说服力,为了学生今后学习中遇到问题上该如何解决,我们必须在常规的教学中去渗透数学思想方法,授人以“渔”。于是教学中,在学生得到了3÷4=()(块)后,不忙于理论的总结,因为在这里学生都只是停留在表面的感性认识。根据学生不同的认知情况,安排了适当的模仿练习,感性体验数学活动,促进学生对结果的深层次的理解。分数除法数学教学反思3

分数应用题是六年级下期的内容,它的教学是小学数学教学中的一个重点,也是一个难点。如何激发学生主动积极地参与学习的全过程呢?

教学时,我没有采用书上的情境,而是从学生的生活实际引入。例如:我们班有多少女生?有多少男生?女生占全班人数的几分之几?现在知道“全班人数”和“女生占全班人数的几分之几”求女生有多少人,怎样求?学生很快就知道列出乘法算式解决。反过来,知道“女生人数”和“女生占全班人数的几分之几”求全班人数呢?这样引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。

让学生理解题中的数量关系是解决分数除法应用题的关键。教学中,我通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律,从而让学生体会并归纳出:解答分数除法应用题的关键是从题目的关键句找出数量之间的相等关系。本课重点是要让学生学会用方程的方法解决有关的分数问题,体会用方程解决实际问题的重要模型。为了帮助学生理解,我借助线段图的直观功能,引导孩子们理清解题思路,找出数量间的相等关系。

在学生学会分析数量关系后,我把分数除法应用题与分数乘法应用题结合起来教学,让学生通过讨论交流对比,感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力。

在学生掌握了用方程解决问题的方法后,我又鼓励他们对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。教学中,给学生提供探究的平台,先让学生独立思考,探究解题方法,在独立探究的基础上,再让学生小组合作讨论,探究不同的解题方法。使学生经历独立探究、小组探究的过程,使学生对“分数除法问题”的算法有初步的感悟,对这类应用题数量关系及解法有清晰的理解,为进入更深层次的学习做好充分的准备。分数除法数学教学反思4

本节课是北师大版数学第十册第三单元《分数除法》中的第三节课。本节课旨在借助图形语言,在操作活动中理解一个数除以分数的意义和计算方法。

为此,根据本节课教材的特点,结合学生已有的个体经验,本节课做了如下三个层次的设计:

第一层次:

“分一分”的活动。通过学生动手分饼活动,让学生经过观察、比较与思考,发现整数除以整数与整数除以分数知识间的内在联系,借助图形语言,初步感知体会“除以一个数”与“乘这个数的倒数”之间的关系。这样做不仅为学生创设了一个更好理解分数除法意义的机会,更主要的是教会学生一种学习的方法,即分数除法的意义可联系整数除法的意义进行学习。最后,通过启发性的问话:“观察这一组算式,你有什么发现?”激发学生思考、求知、解答的愿望,为下一步的探究做了很好的铺垫。

第二层次:

“画一画”的活动。在第一层次分饼的基础上分线段,虽然线段图比圆形图更抽象,但学生已有分饼的经验,所以学生根据问题不难列出算式,怎样求出结果就成为这一操作活动要解决的问题。其中(1)(2)小题比较容易,学生从图上可以看出结果,关键是第三小题不容易突破,是本节课教学的难点。主要是让学生弄清第(2)小题的算理,再将此方法迁移到地(3)小题。

第三层次:

“想一想、填一填”的活动。由于学生有了前面操作的基础,这部分比较大小的题目,他们不难填出答案。但关键是让学生观察、比较、分析,从而发现题目中蕴含的规律。这一活动是学生对前面问题思考过程的整理,对分数除法意义进一步的理解。

第四层次:实践应用活动。是学生应用所学知识解决实际问题,巩固、内化知识的过程。分数除法数学教学反思5

《分数除法》第一课时包含了两方面的内容:分数除法的意义和分数除以整数。本课时是在学习了倒数的基础上开展教学,所以学生已经理解了倒数的意义。实验教材与老教材比较,对于分数除法的意义教学有所弱化,不再要求学生讲清楚每道分数除法的意义,而是改为利用除法算式改写出乘法算式,相对来说,降低了本节课的难度,更加贴合学生实际情况。根据以上情况,本节课把重点定在理解分数除以整数的算理和计算方法上,其中,理解算理是本节课的难点。

教学本节课时,我首先出示4/52,直奔主题。利用例题,让学生进行探究学习。让他们先说说解题设想,包括折一折、画一画、算一算等方式。出乎我意料的是学生经过思考后,争先恐后地说出了多种解答方法。虽然有些方法都是不恰当的,但是学生积极主动的思考,使我感到最高兴的事。有些学生的每种算法把算理都解释得非常清楚。然后引导然后学生说说3份或其他几份怎么算。计算:4/53。最后引导归纳出:把一个数平均分成几份,求其中一份,就是求这个数的几分之一。

《新课标》指出:学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。在教学中只有确立了学生的主体地位,优化学习过程,才能促使学生的自主学习过程。在以往的教学中,教师往往是代替学生发言,代替学生思维,代替学生说出结论,这根本不能体现学生的主体性。久而久之会慢慢抹煞孩子的创新意识。在教学中教师要培养学生的创新意识,发挥学生的主体性,不代替学生去思维。

在计算教学中,一些教师怕学生思考,会出现思维分散,偏离重点,尤其是一些公开课,更不敢放手让学生去思考。这实际上是教师缺乏对学生的正确引导,导致不敢放手让学生去思考,最后只能自己替学生思考、归纳、总结。计算教学要体现学生思维的开放性。鼓励学生解决问题策略的多样化,就要让学生成为学习的主人,把思考的空间留给学生。在本课中,我注重学生思维的开放性,充分让学生自己去利用已有知识和经验,去寻找解决的计算方法,学生通过长期的训练,已能通过各种思维去寻找解决的办法。每种方法都可以看作是一种创新意识的体现。我认为这样的思维活动体现了以学生为主体的学习活动,对学生理解数学是非常重要的。学生的学习不是被动地吸收课本上现成的结论,而是一个亲自参与的充满丰富思维活动的实践和创新的过程。

同时在数学课堂教学中我注重对学生的评价,力争做到评价及时、准确。促使每个学生自主地发展,逐步达到培养学生自主学习、自主创新的'能力,全面提高素质。分数除法数学教学反思6

《分数除法3》是一步计算的分数除法应用题。分数应用题的教学是小学数学教学中的一个重点,也是一个难点。

为了突破这个难点,教材鼓励学生用方程解决简单的分数除法问题,这节课的教学重点就是用方程来解决问题。因此教学时,我让学生认真读题,从中获得信息,找出题中的等量关系,让学生理解并掌握解答分数除法应用题的关键是从题中的关键句找出数量之间的等量关系,根据等量关系式,列出方程,用方程来解决这样的问题,培养学生的方程思想,让学生在自主探索与合作交流的过程中真正理解和掌握用方程解决分数问题的思想和方法。

解决问题后引导学生进行检验,并对于学生可能出现的不同解法给与肯定,引导学生通过比较、反思,体会用方程解决分数除法应用题的优越性。使学生体会到用方程解决实际问题的重要模式。在练习应用题时,鼓励学生对同一问题寻求多种不同的方法,引导学生学会多角度的分析问题,培养学生的探究能力。分数除法数学教学反思7

六年级上学期数学第二单元是“分数除法”,其中第一小节是:“分数除法的意义和计算法则”。在教学上,“分数除法的意义”好办,因为有分数乘法和小数乘法除法的意义做基础,在课堂上,只要按课文编排稍做解释学生就可明白。

对分数除法计算法则,我对课文编排讲解内容作了一下变动。这一小节有3道例题,分别讲“分数除以整数”、“整数除以分数”、“分数除以分数”。分数除法的计算法则如何得来,如何向学生讲得明白,一直是老师们所苦恼的问题。不讲嘛,似乎是没有完成教学任务,讲吧,即使是老师认为自己讲得很明白,其实学生真正理解吗?我认为,学分数除法的关键是记牢、熟练运用“计算法则”,至于这计算法则是如何得来的,可暂时忽略。我把这3道例题分为两节课讲解。第一课时讲“分数除以整数”,通过例1,“把6/7米铁丝平均分成2段,每段长多少米?”使学生明白,把一个数平均分成2份,既可以用除法“÷2”表示,也可以用乘法“×1/2”表示,也就是说“÷2”=“×1/2”,进而,把一个数平均分成3、4、5……,既可以用÷3、÷4、÷5……表示,也可以用×1/3、1/4、1/5……表示,而1/2是2的倒数、1/3是3的倒数……,从而得出“除以一个数(0除外),等于乘这个数的倒数”。在和学生学习过程中,尽管我用的是课本例1的教学素材,但在教学过程中,我一直有意忽略被除数和除数到底是分数还是整数的问题,只是强调被除数除以除数等于乘除数的倒数。教学完例1,就让学生做相应的练习(强化“除以一个数(0除外),等于乘这个数的倒数”的概念)第二课时,同学生学习例2、例3。课文中例2“一辆车2/5小时行驶18千米,1小时行驶多少千米?”,是详细地讲解了为什么18÷2/5最后可以表达为18×2/5,而我只是根据题意列出18÷2/5后,让学生回想例1的学习过程和分数除法计算法则,让学生自己说出18÷2/5=18×2/5,然后计算得出结果,而省略了中间的讲解过程。接着学习例3“小刚3/10小时走了14/15千米,他1小时走多少千米?”“14/15÷3/10=14/15×3/10”。这两道例题是应用题(但在教材安排中,没有把它放在分数除法应用题范围内),我没有把注意力放在计算法则的推倒过程上,反倒是根据题意为什么这样列式花了些时间。

3道例题学习完(还包括相当量的练习),用了两节课,学生已经掌握了“甲数除以乙数(0除外)等于甲数乘乙数的倒数”的分数除法计算法则。根据学生情况的反馈,学生掌握这一小节的知识是扎实的。

现在我还在想,既然乘法不强调被乘数与乘数,如,一本书5元,买3本要多少元?既可以5×3,又可以3×5,只要结果是15元就算对,(但我坚持认为5×3和3×5表达的意义是不一样的,不过,现行教材认为结果一样就行)那么,在学生不太明白算理而只掌握计算方法,在教学上应该是允许的。也许我这样做有点离经叛道,不符合现在的教育教学观念,但要求一定要让学生明白所有算理教学才算成功,似有点不太实际。学生(包括成人)很多时候知道要这样做并且做对了,已经是完成学习任务了,又何必强求一定要“知其所以言”呢?分数除法数学教学反思8

《分数除法(三)》是北师大版小学数学五年级下册第三单元的内容。分数应用题的教学是小学数学教学中的一个重点,也是一个难点。教学中,首先给学生提供探究的平台,让学生独立思考,探究解题方法,在独立探究的基础上,再让学生小组合作讨论,探究不同的解题方法。使学生经历独立探究、小组探究的过程,使学生对“分数除法问题”的算法有初步的感悟,对这类应用题数量关系及解法有清晰的理解,为进入更深层次的学习做好充分的准备。

1、从已有知识入手,激发学生求知欲。在这节课的教学组织中,教师从学生已有的基础知识入手,很自然的将复习铺垫中的乘法应用题过渡到分数除法应用题。将学生的整个学习活动围绕“操场上的活动”这一活动情境步步展开。这样既有一定的挑战性,又能激起学生学习的兴趣,增强学生的求知欲。

2、充分发挥了教师主导作用和学生的主体作用。本节课从新知的引入,到问题的提出、数量关系的分析、问题的解决,在整个学习活动中学生的学习空间是宽阔的。在教学中,教师通过学生同伴间相互说说或在组内讨论,然后集体交流,有效地引导学生,起到了组织者、指导者的作用。在给学生思考的空间、学习的时间和交流机会的同时,学生主体作用得到了发挥,极大地鼓舞了学生,使学生个人的成功感获得了极大的满足,有力的促进了学生的数学思维及能力发展,也更激发他们去主动学数学。

3、练习设计具有层次性。巩固练习是帮助学生进一步掌握所学新知的过程。教学中,教师同样应注意巩固练习设计的层次性,使不同的学生进行不同的练习,这样,即满足了吃不饱学生的需求,同时又能使中下学生获得成功感。

4、学生习惯养成较好,学习能力较强。在每一项活动中,学生都能积极的投入到学习中,且学生倾听、交流等习惯养成较好;此外小组合作组织有序、实效性强,学生语言表达完整、精炼,归纳、总结能力较强。分数除法数学教学反思9

4月22日上午,是我校五年级的家长开放日,我上了一节《分数与除法》的公开课。课后有幸得到了你的导师——广西师大熊宜勤教授的点评,由于当时时间比较紧,我们要赶到拱极小学去听黄智云老师的课,匆忙之中熊教授给我提出了两点宝贵意见:1.在重难点的突破上花的时间还不够.2.练习的设计量过多,没有很好的为本节课服务。听了她的建议以后,我陷入了深深的反思之中。是啊,都十几年的教龄了,怎么还会犯这样的错误呢?备课时,我只考虑到家长们要来听课,脑子里想得更多的是怎样才能把课上活?煞费苦心的创设了一个猪八戒分饼的情境,虽然这样能把整节课的教学内容串联在一起,整体感比较强,学生也很喜欢,但是却没有把例2中的重难点抓住。你的本意原是想把课堂交给学生,引导学生进行具体操作,让学生在具体操作中得出3除以4的商,以明确每人分得的不满1块,可用分数来表示,让学生明白一块饼的就等于3块饼的。可是在教学时,由于没有及时引导学生突出单位“1”,再加上没有使用展台操作,学生的理解就是没有那么到位。接着,我在教学例2后,引导学生观察黑板上的几个算式,总结归纳出分数与除法的关系也只用了1分多钟的时间,很多学生印象还不够深刻就进入了练习环节,以至于后面的练习出现了卡壳现象。

回想自己的这一节课,真的是有太多不足的地方。带着熊教授给我提出的问题,第二天,我聆听了苏文俊老师上的这节课。课一开始,她就复习了上节课中我们学习的分数的意义和分数单位等内容,接着创设了分饼情境,(1)把6块饼平均分给2个同学,每人分得多少块?(2)把1块饼平均分给2个同学,每人分得多少块?(3)把1块饼平均分给3个同学,每人分得多少块?6÷21÷21÷3从数据上看,看得出都是苏老师精心设计的。从商是整数到商可以用小数也可以用分数表示,到除不尽需要用分数表示的思路,充分地让学生体会到解决问题的策略。在复习了把一个数平均分,用除法计算的同时,突出了知识间的联系。另外,对于例题2的教学她也把握得非常好,操作非常到位。2种分法:3块饼平均分给4个人,每人分得多少块?3÷4=?(块)学生经历了猜想和验证。这个估算对于学生用分数表示结果的思考有很重要的帮助。在这节课中,苏老师真正地把课堂交给了学生,她凭借教材内容,不断设疑问难,引导学生积极参与新知的探索过程,给学生充分的思维空间和时间,学生们独立思考、相互讨论、推理交流、经历解决问题的过程,充分体现了学生是学习的主体。正因为学生前面有了大量的感性认识,到后面总结出分数与除法的关系也水到蕖成。

对于例题后面进行的对应训练,苏老师能结合本节课的重难点,设计有层次的练习。学生在理解并掌握了分数与除法之间的关系后,通过这组习题体验到了成功的快乐,建构了知识的框架,实现了数学思想的逐步深入。

回想熊教授的话,再对比苏老师的课堂,让我真正体会到了要想上好一节课,备课时必需要考虑到学生可能会遇到的问题,真正从学生的角度出发,重视学生学习的过程。在教学中把重点放在揭示各个知识形成的方法,展示学习新知识的思维过程之中,让学生通过感知——概括——应用的思维过程去发现真理,掌握规律。

对于课堂练习的设计,不能太多,因为练习量多的弊端会让学生厌烦,我们要注意满足学生的成就感,保持学生的学习兴趣。另外,练习不仅仅是巩固所学知识,还要继续为学生的思维能力发展创设情境,充分发挥它的巩固新知识和发展思维能力的双重作用。

能得到专家的指导,特别是零距离的指导,感受非常深刻,收获也特别多。愿自己在今后的教学中能多取他人之长,补己之短,使自己在教育教学(此文来自)这条路上,越走越宽,不断超越自我,完善自我。分数除法数学教学反思10

分数除法应用题,历来都是教学中的难点。要突破这个难点,让学生透彻理解这类型的应用题,就要抓住乘除法之间的内在联系,通过运用转化、对比,使学生了解这类分数应用题特征,再借助线段图,分析题中的数量关系,找出解题规律。我主要从以下几个方面入手:

一、走进生活,体验生活中的数学

本来人体的机体构造对于小学生来说是一个很有趣的问题。教学一开始我把人体的彩图展现在学生面前,使学生感到数学就在自己的身边,在生活中学数学,让学生学习有价值的数学。使学生从中了解到更多有关人体构造的知识,增加了学生的知识面。

二、使学生在学习过程中真正成为学习的主人

教学中,为让学生认识解答分数除法应用题的关键是什么,我故意用乘法应用题与例题作比较,让学生从中发现与乘法应用题的区别。学生通过交流对比,亲自感受它们的异同,找出它们的内在联系与区别,亲身感受应用题中数量之间的关系,然后想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数除法应用题的关键也是从题目的关键句找出数量之间的相等关系,再列出方程。

三、方法多样化,开拓学生的思维能力

在解答应用题的时候,我鼓励学生尽可能地找出多种方法,让学生从多角度去考虑,这样做可以拓展学生思维,引导学生懂得多角度分析问题,解决问题。充分让学生亲身体验,让学生在探究中加深对分数除法应用题数量关系及解法的理解,提高能力,为学生进入深层次的学习做好充分的准备。分数除法数学教学反思11

本课的教学重点和难点是让学生理解“为什么除以一个分数,等于乘它的倒数”,否则,会使学生陷入只背结论,不明道理的误区,这样的结果或造成学生出错率高,为了很好的突出重点、突破难点,我创造性地使用了教材,做了如下的设计:

一、动手操作,增加直观性。

1、拿出自己准备好的圆形的纸,把它平均分成两份,每份是这张纸的几分之几?怎样计算?结果是多少?学生们通过自己的操作,很快说出了,“1除以2等于二分之一”的正确答案;

2、问:这半张纸,也就是整张纸的二分之一,那么这张纸里有几个这样的二分之一呢?怎样计算?结果是多少?学生们通过观察和思考,得出了“1除以1/2等于2”的结论。我对学生的做法进行了肯定和鼓励。

3、再问:如果把整张纸每1/3一份,又可以分成多少份呢?每四分之一、每五分之一呢?

学生通过亲自动手操作,很快得出了“1除以1/3等于3,1除以1/4等于4的正确结论”,到了1除以1/5时,根本不用动手折就得出了正确的结论。而且大部分学生都总结了“1除以几分之一,就等于几”规律。看着学生们兴奋的表情,我提出了以下的问题:观察以上的算式河的书,你发现了什么?

二、观察讨论,形成规律

学生们通过观察,讨论终于发现了“除以一个分数,等于乘它的倒数”,我又追问:为什么要这样做?大家通过回忆分数的意义,也弄明白了其中的道理。

这节课的学习,学生们大部分掌握了计算方法,但有个别学生在计算时有除号不变的现象。所以,今后应加强这方面的训练,使学生全部掌握计算方法。在解答方程时也不会出错,提高计算能力和解题能力。分数除法数学教学反思12

观察是学生常用的一种学习方法。如在本课得出被除数÷除数=被除数/除数时,我有意识的提出质疑:在分数与除法的关系中,有什么问题要问?学生有的自学了课本,有的依据课前或平时积累的经验,提出:(1)分母能不能为0?(2)用字母如何表示它们的关系?(3)分数是不是就是除法?在这一过程中,学生提出问题指向明确,突出了课堂进一步发展的需要,并在观察发现中答达成问题的解决。有的学生认为分母不能为0,因为分母相当于除数。个别同学认为分子也不能为0,但遭到同伴的反驳,澄清了分子可为0的理由。用字母表示分数与除法的关系,当教师提出用a表示被除数,b表示除数时,学生很轻松就用a/b表示出来;在探究“分数是不是就是除数”,学生的争辩非常激烈,点燃了课堂学习的热情,有学生认为从被除数÷除数=被除数/除数的关系中,非常明确说明分数就是除数,不然怎么用“等于”;有学生从教师提出:“我们学过了哪些数”中得到启发,认为分数是一个数,而除法是一道计算的式子,反对上面学生的意见,得出分数不等于除法;有人认为意义也不同,分数表示把单位“1”平均分成若干份,表示其中的一份或几份叫做分数,而除法表示把一个数平均分成几份,每份是多少??通过争辩,明确分数和除法的各自意义,提示了“分数相当于除法”的生成目标,体验了成功所带来的信心和力量,实现了以人发展为本的教学理念。

“数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”.分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下两方面考虑:

一、以解决问题入手,感受分数的价值。

从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。

二、分数意义的拓展与除法之间关系的理解同步。

当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。

教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。分数除法数学教学反思13

本单元是对分数除法这一单元所学知识,进行系统整理和复习。通过整理和复习,把前面分散学习的知识加以梳理,整出头绪,加以归纳,提出要点。

成功之处:

1.在复习概念方面,主要复习了分数除法的意义和比的意义。通过式子b×3/4=a,明确b的3/4等于a,由b×3/4=a得出a÷3/4=b;a÷b=3/4,a与b的比是3:4,使学生更清晰地感悟乘法与除法,分数与比之间的内在联系。

2.在复习计算方面,先让学生说一说分数除法的计算方法,使学生明确整数可以看成分母是1的分数,所以不管被除数、除数是整数(0除外)还是分数,都可以把除转化为乘,即除以一个数(0除外),等于乘这个数的倒数。

3.在复习比的化简方面,通过让学生说出比和除法、分数的关系,化简比的依据,然后完成第3题,结合题目对常用化简方法加以概括总结。

前后项同乘分母的最小公倍数

分数比前后项同时除以它们的最大公约数

整数比最简单整数比

小数比前后项的小数点右移动相同位数

重点强调了化简比和比值的区别:化简比是以比的形式出现,而比值是一个数。

4.在复习比的应用方面,通过分析数量关系,变换条件让学生感受到分数乘除法形变神不变的内涵。

六年级有男生60人,(),女生有多少人?

(1)女生人数是男生的2/3

(2)男生人数是女生的2/3

(3)男生人数比女生多2/3

(4)男生人数比女生少2/3

(5)女生人数比男生多2/3

(6)女生人数比男生少2/3

通过不同形式的变式练习,使学生体会到只要掌握住数量关系,就能解决问题。

不足之处:

1.复习中只注重了基本的练习,但是题型千变万化,学生灵活解题能力欠缺。

2.对于实际数量和分率的区别,学生容易出现混淆。

再教设计:

在分数乘除法应用题中夯实数量关系的分析,用“单位1”已知和未知来进行乘除法的检验和验证。分数除法数学教学反思14

分数除法简单应用题教学是整个小学阶段应用题教学的重、难点之一,如何激发学生主动积极地参与学习的全过程,引导学生正确理解分数除法应用题的数量关系。

一、从生活入手进行教学。

数学来源于生活,教学要从学生的生活经验和已有的知识背景出发,给他们提供充分的从事数学活动和交流的机会。在本课教学的一开始,我就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,通过班级的人数引出题目:六年级男生人数是全班人数的二分之一,男生有27人,六年级有多少人?让学生简单计算。然后再让学生介绍本班的情况,自编类似的应用题,交给另一部分同学解答,引发学生参与教学的积极性,使学生感受到数学就在自已的身边。在生活中学习数学,其乐无穷!

二、关注过程,让学生获得亲身体验。

教学中,为让学生认识解答分数除法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数除法应用题的关键是从题目的关键句找出数量之间的相等关系。

我在教学中努力体现自主、合作、探究的学习方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师在教学中存在偏差。教师往往喜欢重关键词语琐碎地分析,喜欢用严密的语言进行严谨的逻辑推理,虽分析得头头是道,但容易走两个极端;或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的部分,无为地做深入的、细碎的剖析,这样既浪费了宝贵的课堂时间,又起不到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论