版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024学年山东师范大学附中高三数学第一学期期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线(,)的左、右焦点分别为,以(为坐标原点)为直径的圆交双曲线于两点,若直线与圆相切,则该双曲线的离心率为()A. B. C. D.2.设非零向量,,,满足,,且与的夹角为,则“”是“”的().A.充分非必要条件 B.必要非充分条件C.充分必要条件 D.既不充分也不必要条件3.已知集合的所有三个元素的子集记为.记为集合中的最大元素,则()A. B. C. D.4.某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为()A.58厘米 B.63厘米 C.69厘米 D.76厘米5.设数列的各项均为正数,前项和为,,且,则()A.128 B.65 C.64 D.636.执行下面的程序框图,若输出的的值为63,则判断框中可以填入的关于的判断条件是()A. B. C. D.7.已知函数,关于的方程R)有四个相异的实数根,则的取值范围是(
)A. B. C. D.8.已知函数,要得到函数的图象,只需将的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度9.若样本的平均数是10,方差为2,则对于样本,下列结论正确的是()A.平均数为20,方差为4 B.平均数为11,方差为4C.平均数为21,方差为8 D.平均数为20,方差为810.如图,这是某校高三年级甲、乙两班在上学期的5次数学测试的班级平均分的茎叶图,则下列说法不正确的是()A.甲班的数学成绩平均分的平均水平高于乙班B.甲班的数学成绩的平均分比乙班稳定C.甲班的数学成绩平均分的中位数高于乙班D.甲、乙两班这5次数学测试的总平均分是10311.设,是两条不同的直线,,是两个不同的平面,给出下列四个命题:①若,,则;②若,,则;③若,,则;④若,,则;其中真命题的个数为()A. B. C. D.12.已知数列满足:)若正整数使得成立,则()A.16 B.17 C.18 D.19二、填空题:本题共4小题,每小题5分,共20分。13.已知等比数列满足,,则该数列的前5项的和为______________.14.在棱长为的正方体中,是正方形的中心,为的中点,过的平面与直线垂直,则平面截正方体所得的截面面积为______.15.已知函数f(x)=axlnx﹣bx(a,b∈R)在点(e,f(e))处的切线方程为y=3x﹣e,则a+b=_____.16.已知函数在处的切线与直线平行,则为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分数,满分100分,按照大于或等于80分的为优秀,小于80分的为合格,为了解学生的在该维度的测评结果,在毕业班中随机抽出一个班的数据.该班共有60名学生,得到如下的列联表:优秀合格总计男生6女生18合计60已知在该班随机抽取1人测评结果为优秀的概率为.(1)完成上面的列联表;(2)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?(3)现在如果想了解全校学生在该维度的表现情况,采取简单随机抽样方式在全校学生中抽取少数一部分来分析,请你选择一个合适的抽样方法,并解释理由.附:0.250.100.0251.3232.7065.02418.(12分)在中,、、分别是角、、的对边,且.(1)求角的值;(2)若,且为锐角三角形,求的取值范围.19.(12分)在直角坐标系中,曲线的参数方程为(为参数,为实数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线与曲线交于,两点,线段的中点为.(1)求线段长的最小值;(2)求点的轨迹方程.20.(12分)已知的内角的对边分别为,且.(Ⅰ)求;(Ⅱ)若的周长是否有最大值?如果有,求出这个最大值,如果没有,请说明理由.21.(12分)已知函数f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求实数x的取值范围.22.(10分)如图所示,直角梯形中,,,,四边形为矩形,.(1)求证:平面平面;(2)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长,若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
连接,可得,在中,由余弦定理得,结合双曲线的定义,即得解.【题目详解】连接,则,,所以,在中,,,故在中,由余弦定理可得.根据双曲线的定义,得,所以双曲线的离心率故选:D【题目点拨】本题考查了双曲线的性质及双曲线的离心率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.2、C【解题分析】
利用数量积的定义可得,即可判断出结论.【题目详解】解:,,,解得,,,解得,“”是“”的充分必要条件.故选:C.【题目点拨】本题主要考查平面向量数量积的应用,考查推理能力与计算能力,属于基础题.3、B【解题分析】
分类讨论,分别求出最大元素为3,4,5,6的三个元素子集的个数,即可得解.【题目详解】集合含有个元素的子集共有,所以.在集合中:最大元素为的集合有个;最大元素为的集合有;最大元素为的集合有;最大元素为的集合有;所以.故选:.【题目点拨】此题考查集合相关的新定义问题,其本质在于弄清计数原理,分类讨论,分别求解.4、B【解题分析】
由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可.【题目详解】因为弧长比较短的情况下分成6等分,所以每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,故导线长度约为63(厘米).故选:B.【题目点拨】本题主要考查了扇形弧长的计算,属于容易题.5、D【解题分析】
根据,得到,即,由等比数列的定义知数列是等比数列,然后再利用前n项和公式求.【题目详解】因为,所以,所以,所以数列是等比数列,又因为,所以,.故选:D【题目点拨】本题主要考查等比数列的定义及等比数列的前n项和公式,还考查了运算求解的能力,属于中档题.6、B【解题分析】
根据程序框图,逐步执行,直到的值为63,结束循环,即可得出判断条件.【题目详解】执行框图如下:初始值:,第一步:,此时不能输出,继续循环;第二步:,此时不能输出,继续循环;第三步:,此时不能输出,继续循环;第四步:,此时不能输出,继续循环;第五步:,此时不能输出,继续循环;第六步:,此时要输出,结束循环;故,判断条件为.故选B【题目点拨】本题主要考查完善程序框图,只需逐步执行框图,结合输出结果,即可确定判断条件,属于常考题型.7、A【解题分析】=,当时时,单调递减,时,单调递增,且当,当,
当时,恒成立,时,单调递增且,方程R)有四个相异的实数根.令=则,,即.8、A【解题分析】
根据函数图像平移原则,即可容易求得结果.【题目详解】因为,故要得到,只需将向左平移个单位长度.故选:A.【题目点拨】本题考查函数图像平移前后解析式的变化,属基础题.9、D【解题分析】
由两组数据间的关系,可判断二者平均数的关系,方差的关系,进而可得到答案.【题目详解】样本的平均数是10,方差为2,所以样本的平均数为,方差为.故选:D.【题目点拨】样本的平均数是,方差为,则的平均数为,方差为.10、D【解题分析】
计算两班的平均值,中位数,方差得到正确,两班人数不知道,所以两班的总平均分无法计算,错误,得到答案.【题目详解】由题意可得甲班的平均分是104,中位数是103,方差是26.4;乙班的平均分是102,中位数是101,方差是37.6,则A,B,C正确.因为甲、乙两班的人数不知道,所以两班的总平均分无法计算,故D错误.故选:.【题目点拨】本题考查了茎叶图,平均值,中位数,方差,意在考查学生的计算能力和应用能力.11、C【解题分析】
利用线线、线面、面面相应的判定与性质来解决.【题目详解】如果两条平行线中一条垂直于这个平面,那么另一条也垂直于这个平面知①正确;当直线平行于平面与平面的交线时也有,,故②错误;若,则垂直平面内以及与平面平行的所有直线,故③正确;若,则存在直线且,因为,所以,从而,故④正确.故选:C.【题目点拨】本题考查空间中线线、线面、面面的位置关系,里面涉及到了相应的判定定理以及性质定理,是一道基础题.12、B【解题分析】
计算,故,解得答案.【题目详解】当时,,即,且.故,,故.故选:.【题目点拨】本题考查了数列的相关计算,意在考查学生的计算能力和对于数列公式方法的综合应用.二、填空题:本题共4小题,每小题5分,共20分。13、31【解题分析】设,可化为,得,,,14、【解题分析】
确定平面即为平面,四边形是菱形,计算面积得到答案.【题目详解】如图,在正方体中,记的中点为,连接,则平面即为平面.证明如下:由正方体的性质可知,,则,四点共面,记的中点为,连接,易证.连接,则,所以平面,则.同理可证,,,则平面,所以平面即平面,且四边形即平面截正方体所得的截面.因为正方体的棱长为,易知四边形是菱形,其对角线,,所以其面积.故答案为:【题目点拨】本题考查了正方体的截面面积,意在考查学生的空间想象能力和计算能力.15、0【解题分析】
由题意,列方程组可求,即求.【题目详解】∵在点处的切线方程为,,代入得①.又②.联立①②解得:..故答案为:0.【题目点拨】本题考查导数的几何意义,属于基础题.16、【解题分析】
根据题意得出,由此可得出实数的值.【题目详解】,,直线的斜率为,由于函数在处的切线与直线平行,则.故答案为:.【题目点拨】本题考查利用函数的切线与直线平行求参数,解题时要结合两直线的位置关系得出两直线斜率之间的关系,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)在犯错误的概率不超过0.10的前提下认为“性别与测评结果有关系”(3)见解析.【解题分析】
(1)由已知抽取的人中优秀人数为20,这样结合已知可得列联表;(2)根据列联表计算,比较后可得;(3)由于性别对结果有影响,因此用分层抽样法.【题目详解】解:(1)优秀合格总计男生62228女生141832合计204060(2)由于,因此在犯错误的概率不超过0.10的前提下认为“性别与测评结果有关系”.(3)由(2)可知性别有可能对是否优秀有影响,所以采用分层抽样按男女生比例抽取一定的学生,这样得到的结果对学生在该维度的总体表现情况会比较符合实际情况.【题目点拨】本题考查独立性检验,考查分层抽样的性质.考查学生的数据处理能力.属于中档题.18、(1).(2).【解题分析】
(1)根据题意,由余弦定理求得,即可求解C角的值;(2)由正弦定理和三角恒等变换的公式,化简得到,再根据为锐角三角形,求得,利用三角函数的图象与性质,即可求解.【题目详解】(1)由题意知,∴,由余弦定理可知,,又∵,∴.(2)由正弦定理可知,,即∴,又∵为锐角三角形,∴,即,则,所以,综上的取值范围为.【题目点拨】本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.19、(1)(2)【解题分析】
(1)将曲线的方程化成直角坐标方程为,当时,线段取得最小值,利用几何法求弦长即可.(2)当点与点不重合时,设,由利用向量的数量积等于可求解,最后验证当点与点重合时也满足.【题目详解】解曲线的方程化成直角坐标方程为即圆心,半径,曲线为过定点的直线,易知在圆内,当时,线段长最小为当点与点不重合时,设,化简得当点与点重合时,也满足上式,故点的轨迹方程为【题目点拨】本题考查了极坐标与普通方程的互化、直线与圆的位置关系、列方程求动点的轨迹方程,属于基础题.20、(Ⅰ);(Ⅱ)有最大值,最大值为3.【解题分析】
(Ⅰ)利用正弦定理将角化边,再由余弦定理计算可得;(Ⅱ)由正弦定理可得,则,再根据正弦函数的性质计算可得;【题目详解】(Ⅰ)由得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 世界地理 澳大利亚
- 一年级语文下册《语文园地八》课件
- 单位管理制度收录大全【员工管理】
- 港口生产组织与管理课件-港口企业的生产运作
- 消防整改项目可行性研究报告两
- 铜铝合金制品项目可行性研究报告
- 生活中的经济学课件
- 2025年瓦楞纸生项目可行性研究报告
- 氧气瓶项目安全风险评价报告
- 2025年中国公共云存储服务行业发展前景预测及投资战略研究报告
- 电力工程管理培训课件
- 颂钵培训课件
- 电除颤的并发症预防及处理
- 《理想信念教育》课件
- 2023年高级EHS工程师年度总结及下年工作展望
- 《城市规划原理试题》(附答案)
- 110kV升压站构支架组立施工方案
- 《泰语基本用语》课件
- 钢构件应力超声检测技术规程
- 学生成绩通知书模板(寒假)
- -《多轴数控加工及工艺》(第二版)教案
评论
0/150
提交评论