




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
统计学第二次作业(2012年4月27日)
第五章
置信区间
5-28、2003年,在一项对高校扩招的态度调查中,10所北京市院校对高校扩招的态度数据如下表(分数越高态度越积极):
院校名态度平均值标准差人数北京外国语学院中国人民公安大学中国青年政治学院北京农学院北京大学清华大学北方交通大学北京航空航天大学对外经济贸易大学北京医学院3.814.324.083.983.583.784.264.123.884.070.670.550.680.650.640.710.660.740.570.6348505250504950424844
求:1)中国人民公安大学、清华大学、北京大学的总体平均态度分的95%置信区间;
2)中国人民公安大学和北京大学的总体平均态度分之差的95%置信区间;
3)清华大学和北京大学的总体平均态度分之差的95%置信区间。
(提示:要先从S求得)解:(1)因为表中样本数都大于30,所以认为样本均值的抽样分布服从正态分布。~N(u,),用s近似代替σ,根据样本数据的样本均值和标准差:置信水平1-α=95%,查标准正态分布表=1.96中国人民公安大学总体态度分的95%置信区间为(x1-*,x1+*),将表中数据代入(4.32-1.96*,4.32+1.96*)=(4.17,4.47)清华大学总体态度分的95%置信区间为(x2-*,x2+*),同理计算求得(3.58,3.98)。北京大学总体态度分的95%置信区间为(x3-*,x2+*),同理计算求得(3.40,3.76)。(2)两个样本都为大样本,所以根据抽样分布的知识可知,两样本均值之差(-)的抽样分布服从(u1-u2)、方差为(+)的正态分布。中国人民公安大学和北京大学的总体平均态度分之差的95%置信区间为{(-)-*,(-)+*}。用样本方差代替总体方差。所以求得两者总体均值方差的置信区间(0.51,0.97)。(3)同(2),可以求得清华大学和北京大学的总体平均态度分之差的95%置信区间为(-0.066,0.466)。
第六章
假设检验
6-6、从死于汽车碰撞事故的司机中抽取2000名司机的随机样本,根据他们的血液中是否含有酒精以及他们是否对事故负有责任,将数据整理如下表所示。
在整个总体中,血液中含有酒精和不含酒精的司机之间在对事故负有责任方面有差异吗?为了回答这一问题:
1)叙述并计算概值;
2)计算适当的置信区间(95%)来说明差异有多大;
3)从这一数据如何说明“酒精增加了事故的发生率”。有酒精吗有责任吗有无有650150无700500
解:设为含酒精中有责任的概率,无酒精中有责任的概率。提出假设:血液中含酒精和不含酒精的司机之间对事故富有的责任无差异。即=:≠。(3)在Eviews中作X-Y图如下:
7-11、从某单位随机地抽取了相互独立的两个样本(男、女职工收入),其月收入数据如下:
男:2300,2500,3000,2800,2600;
女:2400,2200,2000,2500,2700
用表示收入,用哑变量表示性别:其中对于男性=1,对于女性=0。
1)画出对的图形;
2)用眼睛拟合一条对的回归线;
3)计算对的回归线;与2)中用眼睛拟合的相比,后者的精度如何?
4)构造一个斜率为95%的置信区间,用简单的语言解释一下它的意义;
5)在5%的错误水平下,检验收入是否与性别无关;
6)4)和5)的结果是否度量了该单位对女性的歧视?
解:(1)在Eviews中作X-Y图如下:(2)由上图用眼睛拟合拟合一条对的回归线:Y=2390+200X(3)利用Eviews进行回归:VariableCoefficientStd.Errort-StatisticProb.X280.0000170.88011.6385760.1399C2360.000120.830519.531500.0000R-squared0.251282Meandependentvar2500.000AdjustedR-squared0.157692S.D.dependentvar294.3920S.E.ofregression270.1851Akaikeinfocriterion14.21295Sumsquaredresid584000.0Schwarzcriterion14.27347Loglikelihood-69.06474F-statistic2.684932Durbin-Watsonstat1.278082Prob(F-statistic)0.139935即回归方程为:Y=2380+280X与(2)中直观看到的:我们发现在斜率差距较大。(4)依据Sumsquaredresid584000.0即=584000.0所以==73000(n=10)Se()==170.88(易知=10*0.25=2.5)所以β的95%置信区间为(-*Se(),+*Se())=(280-2.306*170.88,)280+2.306*170.88)=(-114.05,674.05)(自由度为8)这一区间包括零,说明不能拒绝零假设。即认为男女性别对工资多少没有影响。(5)因为F-statistic2.684932Prob(F-statistic)0.139935所以在在5%的错误水平下,不能拒绝零假设。即认为性别与收入无关。(6)4)和5)的结果都认为性别与收入无关,所以没有度量了该单位对女性的歧视。第八章
方差分析
8-4、1977年,美国的某项调查从三种受过不同教育类型的妇女中各分别抽取了50位全日制工作的妇女样本,她们的年收入(单位:千美元)数据整理后归纳如下:
完成的学历年数收入平均值
初中(8年)高中(12年)大学(16年)7.89.714.0183524424707解:H0:x1H1F=SSbdf其中,组间自由度dfb=3-1=2,组内自由度dfw=(50-1)╳由于样本均值x=(7.8+9.7+14.0)/3=10.5所以组间偏差平方和SSb=50(xj-x)2组内偏差平方和SSw=(所以,F=1009/28984/147≈8.2548419>F拒绝原假设;认为不同学历的妇女收入存在差异。8-9、月收入数据:
男:2500,2550,2050,2300,1900
女:2200,2300,1900,2000,1800
如果用Y表示收入,哑变量X表示性别(X=1为女性),计算Y对X的回归方程,并在5%的水平下检验收入是否与性别无关(先求回归系数的置信区间)。
解:令Y=b1+b2根据最小二乘法,可知b2=xi-VAR(b2)=VAR(ui)(VAR(ui)=(ei计算如下:
H0:H1Y2500255020502300190022002300190020001800X0000011111e240290-21040-360160260-140-40-240y=2150,x根据公式1,得b2=-220;b1=2260,即Y=2260根据公式2、3,得VAR(b2)=24450≈n=10.,n-2=8;当df=8时,t0.05b2-2.036<=b2-B2se(b由于原假设B2=0落入了这个置信区间,所以接受原假设,认为b第九章
相关分析
9-1、10对夫妇的一个随机样本给出了如下的结婚年龄数据结婚时丈夫的年龄24
22
26
20
23
21
24
25
22
23
结婚时妻子的年龄24
18
25
22
20
23
19
24
23
22
1)计算样本相关系数r;2)求总体相关系数的95%置信区间;3)以5%的水平,检验“夫妻的结婚年龄之间没有什么线性联系”这一原假设。
解:(1)γ=x由于X=22,Y=23;γ=131440≈(2)由于se(γ)=1-γ2n-2,n=10,df=8,tse(γ)=0.332-2.036<=0.3426-ρ得-0.376872(3)H0:H1:夫妻的结婚年龄之间不完全没有线性相关,根据第(2)题的计算结果,-0.376872由于ρ=0的原假设落入了该置信区间,所以接受原假设,认为夫妻的结婚年龄之间没有线性相关
第十章
卡方检验和交互分析10-14、为了研究性别和“最希望看到的有关奥运会的电视节目类型”之间的关系,2004年在10城市调查了1000个样本,调查数据如下:别
性频次希望看到的节目类型
男女
赛事直播261235
新闻报道6942
专题报道3340
精彩赛事集锦3642
开幕式和闭幕式87108
其他3215
1)陈述;2)计算和的概值。
解:(1)H0:性别
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025带你深入了解合同法:掌握关键条款与履行要点
- 节能环保对公共空间与社区共享的创新与提升考核试卷
- 备战2025年高考活动仪式上校长讲话架设好自己迈向出彩未来的成功通道
- 2024年氮化硅陶瓷轴承球项目投资申请报告代可行性研究报告
- 抖音火花AR特效定制开发与抖音平台独家合作合同
- 极端气候下混凝土冬季施工风险评估合同
- 2025年中国钣金工具行业市场前景预测及投资价值评估分析报告
- 盲盒商品销售品牌授权及市场拓展协议
- 镀铑电镀工劳务合作协议
- 海外房产托管及租赁市场开发服务协议
- 浙江省温州市2024年高一下学期期末教学质量统测英语试题(B)含解析
- 教科版科学五年级下册《课本问题课后研讨题》参考答案
- 生活中的趣味数学智慧树知到期末考试答案章节答案2024年石河子大学
- 医疗收费收据样式(医院基层)
- 2024年北京市中考物理模拟卷(一)
- MOOC 金融法学-浙江财经大学 中国大学慕课答案
- 浙江省杭州市上城区2022-2023学年六年级下学期期末语文试题
- MOOC 从china到China:中国陶瓷文化三十讲-景德镇陶瓷大学 中国大学慕课答案
- 安徽省芜湖市2022-2023学年高一上学期期末教学质量统测物理试题 含解析
- 崇尚科学拒绝宗教
- 年产5万吨丁苯橡胶的工艺设计样本
评论
0/150
提交评论