版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
MATLAB中控制系统
的数学描述与建模在线性系统理论中,一般常用的数学模型形式有:传递函数模型(系统的外部模型);状态方程模型(系统的内部模型);零极点增益模型和部分分式模型等。这些模型之间都有着内在的联系,可以相互进行转换。6/26/20231例1.m
电路图如下,R=1.4欧,L=2亨,C=0.32法,初始状态:电感电流为零,电容电压为0.5V,t=0时刻接入1V的电压,求0<t<15s时,i(t),vo(t)的值,并且画出电流与电容电压的关系曲线。6/26/20232对线性定常系统,式中s的系数均为常数,且a1不等于零,这时系统在MATLAB中可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num和den表示。 num=[b1,b2,…,bm,bm+1] den=[a1,a2,…,an,an+1] 注意:它们都是按s的降幂进行排列的。MATLAB中的传递函数描述一、连续系统的传递函数模型连续系统的传递函数如下:6/26/20233零极点模型实际上是传递函数模型的另一种表现形式,其原理是分别对原系统传递函数的分子、分母进行分解因式处理,以获得系统的零点和极点的表示形式。在MATLAB中零极点增益模型用[z,p,K]矢量组表示。即:z=[z1,z2,…,zm]p=[p1,p2,...,pn]K=[k]函数tf2zp()可以用来求传递函数的零极点和增益。二、零极点增益模型K为系统增益,zi为零点,pj为极点6/26/20234控制系统常用到并联系统,这时就要对系统函数进行分解,使其表现为一些基本控制单元的和的形式。函数[r,p,k]=residue(b,a)对两个多项式的比进行部分展开,以及把传函分解为微分单元的形式。向量b和a是按s的降幂排列的多项式系数。部分分式展开后,余数返回到向量r,极点返回到列向量p,常数项返回到k。[b,a]=residue(r,p,k)可以将部分分式转化为多项式比p(s)/q(s)。三、部分分式展开6/26/20235举例:传递函数描述1)》num=[12,24,0,20];den=[24622];2)借助多项式乘法函数conv来处理:》num=4*conv([1,2],conv([1,6,6],[1,6,6]));》den=conv([1,0],conv([1,1],conv([1,1],conv([1,1],[1,3,2,5]))));6/26/20236零极点增益模型:》num=[1,11,30,0];》den=[1,9,45,87,50];[z,p,k]=tf2zp(num,den)》z=0-6-5p=-3.0000+4.0000i-3.0000-4.0000i-2.0000-1.0000k=1结果表达式:6/26/20237部分分式展开:》num=[2,0,9,1];》den=[1,1,4,4];[r,p,k]=residue(num,den)》p=0.0000+2.0000i0.0000-2.0000i-1.0000k=2r=0.0000-0.2500i0.0000+0.2500i-2.0000结果表达式:6/26/20238状态方程与输出方程的组合称为状态空间表达式,又称为动态方程,经典控制理论用传递函数将输入—输出关系表达出来,而现代控制理论则用状态方程和输出方程来表达输入—输出关系,揭示了系统内部状态对系统性能的影响。状态空间描述在MATLAB中,系统状态空间用(A,B,C,D)矩阵组表示。6/26/20239举例:系统为一个两输入两输出系统》A=[16910;31268;47911;5121314];》B=[46;24;22;10];》C=[0021;8022];》D=zeros(2,2);6/26/202310在一些场合下需要用到某种模型,而在另外一些场合下可能需要另外的模型,这就需要进行模型的转换。模型转换的函数包括:residue:传递函数模型与部分分式模型互换ss2tf:状态空间模型转换为传递函数模型ss2zp:状态空间模型转换为零极点增益模型tf2ss:传递函数模型转换为状态空间模型tf2zp:传递函数模型转换为零极点增益模型zp2ss:零极点增益模型转换为状态空间模型zp2tf:零极点增益模型转换为传递函数模型 模型的转换与连接一、模型的转换6/26/202311用法举例:1)已知系统状态空间模型为:》A=[01;-1-2];B=[0;1];》C=[1,3];D=[1];》[num,den]=ss2tf(A,B,C,D,iu)%iu用来指定第n个输入,当只有一个输入时可忽略。》num=152;den=121;》[z,p,k]=ss2zp(A,B,C,D,iu)》z=-4.5616p=-1k=1-0.4384-16/26/2023122)已知一个单输入三输出系统的传递函数模型为:》num=[00-2;0-1-5;120];den=[16116];》[A,B,C,D]=tf2ss(num,den)》A=-6-11-6B=1C=00-2D=010000-1-50010012006/26/2023133)系统的零极点增益模型:》z=[-3];p=[-1,-2,-5];k=6;》[num,den]=zp2tf(z,p,k)》num=00618den=181710》[a,b,c,d]=zp2ss(z,p,k)》a=-1.000000b=12.0000-7.0000-3.1623103.162300c=001.8974d=0注意:零极点的输入可以写出行向量,也可以写出列向量。
6/26/2023144)已知部分分式:》r=[-0.25i,0.25i,-2];》p=[2i,-2i,-1];k=2;》[num,den]=residue(r,p,k)》num=2091》den=1144注意余式一定要与极点相对应。
6/26/2023151、并联:parallel格式:[a,b,c,d]=parallel(a1,b1,c1,d1,a2,b2,c2,d2)%并联连接两个状态空间系统。[a,b,c,d]=parallel(a1,b1,c1,d1,a2,b2,c2,d2,inp1,inp2,out1,out2)%inp1和inp2分别指定两系统中要连接在一起的输入端编号,从u1,u2,…,un依次编号为1,2,…,n;out1和out2分别指定要作相加的输出端编号,编号方式与输入类似。inp1和inp2既可以是标量也可以是向量。out1和out2用法与之相同。如inp1=1,inp2=3表示系统1的第一个输入端与系统2的第三个输入端相连接。若inp1=[13],inp2=[21]则表示系统1的第一个输入与系统2的第二个输入连接,以及系统1的第三个输入与系统2的第一个输入连接。[num,den]=parallel(num1,den1,num2,den2)%将并联连接的传递函数进行相加。模型的连接6/26/2023162、串联:series格式:[a,b,c,d]=series(a1,b1,c1,d1,a2,b2,c2,d2)%串联连接两个状态空间系统。[a,b,c,d]=series(a1,b1,c1,d1,a2,b2,c2,d2,out1,in2)%out1和in2分别指定系统1的部分输出和系统2的部分输入进行连接。[num,den]=series(num1,den1,num2,den2)%将串联连接的传递函数进行相乘。6/26/2023173、反馈:feedback格式:[a,b,c,d]=feedback(a1,b1,c1,d1,a2,b2,c2,d2)%将两个系统按反馈方式连接,一般而言,系统1为对象,系统2为反馈控制器。[a,b,c,d]=feedback(a1,b1,c1,d1,a2,b2,c2,d2,sign)%系统1的所有输出连接到系统2的输入,系统2的所有输出连接到系统1的输入,sign用来指示系统2输出到系统1输入的连接符号,sign缺省时,默认为负,即sign=-1。总系统的输入/输出数等同于系统1。[a,b,c,d]=feedback(a1,b1,c1,d1,a2,b2,c2,d2,inp1,out1)%部分反馈连接,将系统1的指定输出out1连接到系统2的输入,系统2的输出连接到系统1的指定输入inp1,以此构成闭环系统。[num,den]=feedback(num1,den1,num2,den2,sign)%可以得到类似的连接,只是子系统和闭环系统均以传递函数的形式表示。sign的含义与前述相同。6/26/202318ctrb和obsv函数可以求出状态空间系统的可控性和可观性矩阵。格式:co=ctrb(a,b)ob=obsv(a,c)对于n×n矩阵a,n×m矩阵b和p×n矩阵cctrb(a,b)可以得到n×nm的可控性矩阵co=[baba2b…an-1b]obsv(a,c)可以得到nm×n的可观性矩阵ob=[ccaca2…can-1]’当co的秩为n时,系统可控;当ob的秩为n时,系统可观。模型的属性6/26/202319在进行控制系统的仿真之前,建立系统的模型表达式是关键的一步。对于控制系统,有不同的分类,在本课程中主要讨论的是线性定常连续系统系统的描述有不同的方法:微分方程;传递函数;零极点增益模式;部分分式展开;状态空间模型等。系统的模型之间可以相互转换,要求熟练掌握各种模型之间转换的命令。模型之间可以进行连接,常用的模型连接命令:串联、并联、反馈。6/26/202320控制系统的分析方法早期的控制系统分析过程复杂而耗时,如想得到一个系统的冲激响应曲线,首先需要编写一个求解微分方程的子程序,然后将已经获得的系统模型输入计算机,通过计算机的运算获得冲激响应的响应数据,然后再编写一个绘图程序,将数据绘制成可供工程分析的响应曲线。MATLAB控制系统工具箱和SIMULINK辅助环境的出现,给控制系统分析带来了福音。控制系统的分析包括系统的稳定性分析、时域分析、频域分析及根轨迹分析。6/26/202321控制系统的分析方法控制系统的稳定性分析控制系统的时域分析控制系统的频域分析控制系统的根轨迹分析6/26/202322控制系统的稳定性分析对于连续时间系统,如果闭环极点全部在S平面左半平面,则系统是稳定的。对于离散时间系统,如果系统全部极点都位于Z平面的单位圆内,则系统是稳定的。MATLAB提供了直接求取系统所有零极点的函数,因此可以直接根据零极点的分布情况对系统的稳定性6/26/202323例2.m系统模型如下所示,判断系统的稳定性6/26/202324ii=find(条件式)用来求取满足条件的向量的下标向量,以列向量表示。例如exp4_1.m中的条件式为real(p>0),其含义就是找出极点向量p中满足实部的值大于0的所有元素下标,并将结果返回到ii向量中去。这样如果找到了实部大于0的极点,则会将该极点的序号返回到ii下。如果最终的结果里ii的元素个数大于0,则认为找到了不稳定极点,因而给出系统不稳定的提示,若产生的ii向量的元素个数为0,则认为没有找到不稳定的极点,因而得出系统稳定的结论。pzmap(p,z)根据系统已知的零极点p和z绘制出系统的零极点图6/26/202325控制系统的时域分析 一个动态系统的性能常用典型输入作用下的响应来描述。响应是指零初始值条件下某种典型的输入函数作用下对象的响应,控制系统常用的输入函数为单位阶跃函数和脉冲激励函数(即冲激函数)。在MATLAB的控制系统工具箱中提供了求取这两种输入下系统响应的函数。一、时域分析的一般方法求取系统单位阶跃响应:step()求取系统的冲激响应:impulse()6/26/2023261、step()函数的用法exp4_3_.my=step(num,den,t):其中num和den分别为系统传递函数描述中的分子和分母多项式系数,t为选定的仿真时间向量,一般可以由t=0:step:end等步长地产生出来。该函数返回值y为系统在仿真时刻各个输出所组成的矩阵。6/26/202327如果对具体的响应值不感兴趣,而只想绘制系统的阶跃响应曲线,可调用以下的格式:step(num,den);step(num,den,t);线性系统的稳态值可以通过函数dcgain()来求取,其调用格式为:dc=dcgain(num,den)或dc=dcgain(a,b,c,d)[y,x,t]=step(num,den):此时时间向量t由系统模型的特性自动生成。6/26/2023282、impulse()函数的用法求取脉冲激励响应的调用方法与step()函数基本一致。y=impulse(num,den,t);[y,x,t]=impulse(num,den);[y,x,t]=impulse(A,B,C,D,iu,t)impulse(num,den);impulse(num,den,t)impulse(A,B,C,D,iu);impulse(A,B,C,D,iu,t)6/26/202329常用时域分析函数 时间响应探究系统对输入和扰动在时域内的瞬态行为,系统特征如:上升时间、调节时间、超调量和稳态误差都能从时间响应上反映出来。MATLAB除了提供前面介绍的对系统阶跃响应、冲激响应等进行仿真的函数外,还提供了大量对控制系统进行时域分析的函数,如:covar:连续系统对白噪声的方差响应initial:连续系统的零输入响应lsim:连续系统对任意输入的响应对于离散系统只需在连续系统对应函数前加d就可以,如dstep,dimpulse等。它们的调用格式与step、impulse类似,可以通过help命令来察看自学。6/26/202330控制系统的频域分析频率响应是指系统对正弦输入信号的稳态响应,从频率响应中可以得出带宽、增益、转折频率、闭环稳定性等系统特征。频率特性是指系统在正弦信号作用下,稳态输出与输入之比对频率的关系特性。频率特性函数与传递函数有直接的关系,记为:一、频域分析的一般方法6/26/202331求取系统对数频率特性图(波特图):bode()求取系统奈奎斯特图(幅相曲线图或极坐标图):nyquist()频域分析法是应用频率特性研究控制系统的一种典型方法。采用这种方法可直观地表达出系统的频率特性,分析方法比较简单,物理概念比较明确,对于诸如防止结构谐振、抑制噪声、改善系统稳定性和暂态性能等问题,都可以从系统的频率特性上明确地看出其物理实质和解决途经。通常将频率特性用曲线的形式进行表示,包括对数频率特性曲线和幅相频率特性曲线简称幅相曲线,MATLAB提供了绘制这两种曲线的函数。6/26/202332二、常用频域分析函数MATLAB基本频域分析函数外,还提供了大量在工程实际中广泛应用的库函数,由这些函数可以求得系统的各种频率响应曲线和特征值。如:margin:求幅值裕度和相角裕度及对应的转折频率freqs:模拟滤波器特性nichols:求连续系统的尼科尔斯频率响应曲线(即对数幅相曲线)ngrid:尼科尔斯方格图6/26/202333控制系统的根轨迹分析所谓根轨迹是指,当开环系统某一参数从零变到无穷大时,闭环系统特征方程的根在s平面上的轨迹。一般来说,这一参数选作开环系统的增益K,而在无零极点对消时,闭环系统特征方程的根就是闭环传递函数的极点。根轨迹分析方法是分析和设计线性定常控制系统的图解方法,使用十分简便。利用它可以对系统进行各种性能分析.一、根轨迹分析方法的概念6/26/202334稳定性当开环增益K从零到无穷大变化时,图中的根轨迹不会越过虚轴进入右半s平面,因此这个系统对所有的K值都是稳定的。如果根轨迹越过虚轴进入右半s平面,则其交点的K值就是临界稳定开环增益。6/26/202335稳态性能开环系统在坐标原点有一个极点,因此根轨迹上的K值就是静态速度误差系数,如果给定系统的稳态误差要求,则可由根轨迹确定闭环极点容许的范围。6/26/202336动态性能当0<K<0.5时,所有闭环极点位于实轴上,系统为过阻尼系统,单位阶跃响应为非周期过程;当K=0.5时,闭环两个极点重合,系统为临界阻尼系统,单位阶跃响应仍为非周期过程,但速度更快;当K>0.5时,闭环极点为复数极点,系统为欠阻尼系统,单位阶跃响应为阻尼振荡过程,且超调量与K成正比。6/26/202337二、根轨迹分析函数 通常来说,绘制系统的根轨迹是很繁琐的事情,在MATLAB中,专门提供了绘
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化工设计-ASPEN软件:第三章传热单元模拟
- 二零二四年建筑工程设计与施工承包合同2篇
- 人教版九年级化学第九单元3溶液的浓度课时1溶质的质量分数溶液的稀释或浓缩分层作业课件
- 怎样做竞聘培训师演讲
- 手车协议书模板
- 酒店员工培训目标
- 税务局建设规划方案
- 租赁停车场合同版
- 《火腿肠的制作》课件
- 竞聘护理重症骨干
- 广东省深圳实验湛江一中珠海一中2023-2024学年高三12月联考英语试题含答案
- “双碳”目标下企业绿色技术创新绩效影响评价研究
- 2024中国邮政集团公司贵州省分公司春季招聘223人(高频重点提升专题训练)共500题附带答案详解
- 高级中学校学生宿舍及食堂建设工程初步设计说明书
- 第五单元 国乐飘香 演唱 彩云追月 教学设计 2023-2024学年乐人音版初中音七年级下册教案1000字
- 2024共建实验室合作协议
- 新电子税务局培训课件(20240510)全国统一规范电子税务局试点纳税人培训
- 2024年辐射防护培训试题
- 《研学旅行课程设计》课件-研学课程方案设计
- SYT 5037-2012 普通流体输送管道用埋弧焊钢管
- MOOC 英文技术写作-东南大学 中国大学慕课答案
评论
0/150
提交评论