高中数学函数的基本性质_第1页
高中数学函数的基本性质_第2页
高中数学函数的基本性质_第3页
高中数学函数的基本性质_第4页
高中数学函数的基本性质_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中数学函数的基本性质第一页,共五十三页,编辑于2023年,星期六观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:

1、观察这三个图象,你能说出图象的特征吗?2、随x的增大,y的值有什么变化?第二页,共五十三页,编辑于2023年,星期六第三页,共五十三页,编辑于2023年,星期六1.3.1单调性与最大(小)值第四页,共五十三页,编辑于2023年,星期六请观察函数y=x2与y=x3图象,回答下列问题:1、当x∈[0,+∞),x增大时,图(1)中的y值

;图(2)中的y值

。2、当x∈(-∞,0),x增大时,图(1)中的y值

;图(2)中的y值

。增大增大增大减小第五页,共五十三页,编辑于2023年,星期六3、分别指出图(1)、图(2)中,当x∈[0,+∞)和x∈(-∞,0)时,函数图象是上升的还是下降的?4、通过前面的讨论,你发现了什么?结论:若一个函数在某个区间内图象是上升的,则函数值y随x的增大而增大,反之亦真;若一个函数在某个区间内图象是下降的,则函数值y随x的增大而减小,反之亦真。第六页,共五十三页,编辑于2023年,星期六观察某城市一天24小时气温变化图.θ=f(t),t∈[0,24]问题:如何描述气温θ随时间t的变化情况?第七页,共五十三页,编辑于2023年,星期六(t1,θ1)(t2,θ2)t1t2问题:在区间[4,14]上,如何用数学符号语言来刻画“θ随t的增大而增大”这一特征?

如图,研究函数θ=f(t),t∈[0,24]的图象在区间[4,14]上的变化情况.第八页,共五十三页,编辑于2023年,星期六在[4,14]上,取几个不同的输入值,例如t1=5,t2=6,t3=8,t4=10,得到相对应的输出值θ1,θ2,θ3,θ4.在t1<t2<t3<t4时,有θ1<θ2<θ3<θ4,所以在[4,14]上,θ随t的增大而增大.tθO取区间内n个输入值t1,t2,t3,…,tn,得到相对应的输出值θ1,θ2,θ3,…,θn,在t1<t2<t3<…<tn时,有θ1<θ2<θ3<…<θn,所以在区间[4,14]上,θ随t的增大而增大.在[4,14]上任取两个值t1,t2,只要t1<t2,就有θ1<θ2,就可以说在区间[4,14]上,θ随t的增大而增大.第九页,共五十三页,编辑于2023年,星期六问题:设函数y=f(x)的定义域为A,区间IA,在区间I上,y随x的增大而增大,该如何用数学符号语言来刻画呢?

在[4,14]上内任取两个值t1,t2,只要t1<t2,就有θ1<θ2,就可以说在区间[4,14]上,θ随t的增大而增大.第十页,共五十三页,编辑于2023年,星期六函数y=f(x)的定义域为A,区间IA,如果对于区间I内的任意两个值x1,x2,

当x1<x2时,都有f(x1)<f(x2),那么就说函数y=f(x)在区间I上是单调增函数,区间I称为函数y=f(x)的单调增区间.第十一页,共五十三页,编辑于2023年,星期六问题:

如何定义单调减函数和单调减区间呢?

第十二页,共五十三页,编辑于2023年,星期六函数y=f(x)的定义域为A,区间IA,如果对于区间I内的任意两个值x1,x2

当x1<x2时,都有f(x1)>f(x2),那么就说函数y=f(x)在区间I上是单调减函数,区间I称为函数y=f(x)的单调减区间.第十三页,共五十三页,编辑于2023年,星期六1.函数y=f(x),x∈[0,3]的图象如图所示.Oxy123区间[0,3]是该函数的单调增区间吗?概念辨析第十四页,共五十三页,编辑于2023年,星期六

2.对于二次函数f(x)=x2,因为-1,2∈(-∞,+∞),当-1<2时,f(-1)<f(2),所以函数f(x)=x2在区间(-∞,+∞)上是单调增函数.

3.已知函数y=f(x)的定义域为[0,+∞),若对于任意的x2>0,都有f(x2)<f(0),则函数y=f(x)在区间[0,+∞)上是单调减函数.yxOx2f(x2)判断第十五页,共五十三页,编辑于2023年,星期六yx10x2xf(x1)f(x2)设函数f(x)的定义域为I:

如果对于属于定义域I内某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数一、增函数第十六页,共五十三页,编辑于2023年,星期六

如果函数y=f(x)在某个区间是增函数或减函数,那么就说函数y=f(x)在这个区间具有(严格的)单调性,这一区间叫做y=f(x)的单调区间.yf(x1)f(x2)x10x2x设函数f(x)的定义域为I:

如果对于属于定义域I内某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数二、减函数三、单调性与单调区间第十七页,共五十三页,编辑于2023年,星期六请问:

在单调区间上增函数的图象是__________,

减函数的图象是__________.(填“上升的”或“下降的”)上升的下降的想一想:如何从一个函数的图象来判断这个函数在定义域内的某个单调区间上是增函数还是减函数?

如果这个函数在某个单调区间上的图象是上升的,那么它在这个单调区间上就是增函数;如果图象是下降的,那么它在这个单调区间上就是减函数。第十八页,共五十三页,编辑于2023年,星期六1、增函数、减函数的三个特征:(1)局部性:也就是说它肯定有一个区间。区间可以是整个定义域,也可以是其真子集,因此,我们说增函数、减函数时,必须指明它所在的区间。如y=x+1(X∈Z)不具有单调性(2)任意性:它的取值是在区间上的任意两个自变量,决不能理解为很多或无穷多个值。(3)一致性增函数:f()f()减函数:f()>

f()。

<<<第十九页,共五十三页,编辑于2023年,星期六例1.下图是定义在闭区间[-5,5]上的函数y=f(x)的图象,根据图象说出y=f(x)的单调区间,以及在每个单调区间上,y=f(x)是增函数还是减函数?解:函数y=f(x)的单调区间有[-5,-2),[-2,1),[1,3),[3,5],其中y=f(x)在区间[-5,-2),[1,3)上是减函数,在区间[-2,1),[3,5]上是增函数.第二十页,共五十三页,编辑于2023年,星期六例2:物理学中的玻意耳定律(k为正常数)告诉我们,对于一定量的气体,当其体积V减小时,压强p将增大。试用函数的单调性证明之。Vkp=分析:按题意,只要证明函数在区间上是减函数即可。第二十一页,共五十三页,编辑于2023年,星期六例2、物理学中的玻意耳定律告诉我们,对于一定量的气体,当其体积V减小时,压强p将增大。试用函数的单调性证明之。证明:根据单调性的定义,设V1,V2是定义域(0,+∞)上的任意两个实数,且V1<V2,则由V1,V2∈

(0,+∞)且V1<V2,得V1V2>0,V2-V1>0又k>0,于是

所以,函数是减函数.也就是说,当体积V减少时,压强p将增大.取值定号变形作差结论第二十二页,共五十三页,编辑于2023年,星期六例:证明函数f(x)=x3在R上是增函数.证明:设x1,x2是R上任意两个

实数,且x1<x2,则

f(x1)-f(x2)=x13-x23

=(x1-x2)(x12+x1x2+x22)=(x1-x2)[(x1+x2)2+x22]

因为x1<x2,则x1-x2<0

又(x1+x2)2+x22>0

所以f(x1)-f(x2)<0

即f(x1)<f(x2)

所以f(x)=x3在R上是增函数.第二十三页,共五十三页,编辑于2023年,星期六探究:画出反比例函数的图象。(1)这个函数的定义域I是什么?(2)它在定义域I上的单调性是怎样的?证明你的结论。

通过观察图象,先对函数是否具有某种性质做出猜想,然后通过逻辑推理,证明这种猜想的正确性,是研究函数性质的一种常用方法。第二十四页,共五十三页,编辑于2023年,星期六证明:设x1,x2∈(0,+∞),且x1<x2,则1-1-1Ox

y1f(x)在定义域

上是减函数吗?

取x1=-1,x2=1

f(-1)=-1

f(1)=1

-1<1

f(-1)<f(1)第二十五页,共五十三页,编辑于2023年,星期六用定义证明函数的单调性的步骤:(1).设x1<x2,并是某个区间上任意二值;(2).作差

f(x1)-f(x2);(3).判断

f(x1)-f(x2)的符号:(4).作结论.①分解因式,得出因式(x1-x2②配成非负实数和。方法小结③有理化。

第二十六页,共五十三页,编辑于2023年,星期六5、讨论函数f(x)=x+1x在(0,+∞)上的单调性.解:设0<x1<x2

则f(x1)–f(x2)=(x1-x2)+1x11x2=-(x1–x2)(x1x2–1)x1·x2

∵0<x1<

x2∴x1-

x2<0,x1·x2>0⑴当0<x1<

x2<1时,

x1x2<

1,

∴x1x2–1<0

∴f(x1)–f(x2)

<0即f(x1)>f(x2)∴f(x)=x+1x在(0,1]上是减函数.⑵当1<x1<

x2时,

x1x2>

1,

∴x1x2–1>0

∴f(x1)–f(x2)

>0即f(x1)<f(x2)∴f(x)=x+1x在[1,+∞)上是增函数.第二十七页,共五十三页,编辑于2023年,星期六例3求函数f(x)=x+(k>0)在x>0上的单调性解:对于x2>x1>0,f(x2)-f(x1)=x2-x1+-=(x1x2-k)因>0X12-k<x1x2-k<x22-k故x22-k≤0即x2≤时,f(x2)<f(x1)同理x1≥时,f(x2)>f(x1)总之,f(x)的增区间是,减区间是第二十八页,共五十三页,编辑于2023年,星期六图象上有一个最低点(0,0),即对于任意的,都有图象没有最低点。第二十九页,共五十三页,编辑于2023年,星期六画出下列函数的草图,并根据图象解答下列问题:

1说出y=f(x)的单调区间,以及在各单调区间上的单调性;2指出图象的最高点或最低点,并说明它能体现函数的什么特征?

(1)(2)

xyooxy2-1第三十页,共五十三页,编辑于2023年,星期六

1.最大值

一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:

(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M那么,称M是函数y=f(x)的最大值

第三十一页,共五十三页,编辑于2023年,星期六2.最小值

一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:

(1)对于任意的x∈I,都有f(x)≥M;(2)存在x0∈I,使得f(x0)=M那么,称M是函数y=f(x)的最小值

第三十二页,共五十三页,编辑于2023年,星期六2、函数最大(小)值应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M).

注意:1、函数最大(小)值首先应该是某一个函数值,即存在x0∈I,使得f(x0)=M;第三十三页,共五十三页,编辑于2023年,星期六例3、“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点(大约是在距地面高度25m到30m处)时爆裂.如果在距地面高度18m的地方点火,并且烟花冲出的速度是14.7m/s.写出烟花距地面的高度与时间之间的关系式.(2)烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1m).第三十四页,共五十三页,编辑于2023年,星期六第三十五页,共五十三页,编辑于2023年,星期六解:(1)设烟花在t秒时距地面的高度为hm,则由物体运动原理可知:h(t)=-4.9t2+14.7t+18(2)作出函数h(t)=-4.9t2+14.7t+18的图象(如右图).显然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面的高度.由于二次函数的知识,对于h(t)=-4.9t2+14.7t+18,我们有:于是,烟花冲出后1.5秒是它爆裂的最佳时刻,这时距地面的高度为29m.第三十六页,共五十三页,编辑于2023年,星期六例3.求函数在区间[2,6]上的最大值和最小值.

解:设x1,x2是区间[2,6]上的任意两个实数,且x1<x2,则由于2<x1<x2<6,得x2-x1>0,(x1-1)(x2-1)>0,于是所以,函数是区间[2,6]上的减函数.第三十七页,共五十三页,编辑于2023年,星期六因此,函数在区间[2,6]上的两个端点上分别取得最大值和最小值,即在点x=2时取最大值,最大值是2,在x=6时取最小值,最小值为0.4.第三十八页,共五十三页,编辑于2023年,星期六(二)利用函数单调性判断函数的最大(小)值的方法

1.利用二次函数的性质(配方法)求函数的最大(小)值

2.利用图象求函数的最大(小)值

3.利用函数单调性的判断函数的最大(小)值

如果函数y=f(x)在区间[a,b]上单调递增,则函数y=f(x)在x=a处有最小值f(a),在x=b处有最大值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

第三十九页,共五十三页,编辑于2023年,星期六课堂练习1、函数f(x)=x2+4ax+2在区间(-∞,6]内递减,则a的取值范围是()A、a≥3B、a≤3C、a≥-3D、a≤-3D2、在已知函数f(x)=4x2-mx+1,在(-∞,-2]上递减,在[-2,+∞)上递增,则f(x)在[1,2]上的值域____________.[21,39]第四十页,共五十三页,编辑于2023年,星期六归纳小结

1、函数的最大(小)值及其几何意义.

2、利用函数的单调性求函数的最大(小)值.

第四十一页,共五十三页,编辑于2023年,星期六证明:函数f(x)=1/x在(0,+∞)上是减函数。证明:设x1,x2是(0,+∞)上任意两个实数,且x1<x2,则f(x1)-f(x2)=由于x1,x2得x1x2>0,又由x1<x2得x2-x1>0所以f(x1)-f(x2)>0,

即f(x1)>f(x2)因此f(x)=1/x在(0,+∞)上是减函数。取值判断符号变形作差下结论第四十二页,共五十三页,编辑于2023年,星期六例题讲解:

例1设函数f(x)=x2-2x-3.3在区间[t,t+1]上的最小值为g(t),求g(t)的解析式。分析

解:f(x)=(x-1)2-4.3,对称轴为x=1

(2)当0≤t≤1时,则g(t)=f(1)=-4.3;

(1)当t>1时,则g(t)=f(t)=t2-2t-3.3;

(3)当t+1<1,即t<0时,则g(t)=f(t+1)=t2-4.3;t2-2t-3.3;(0≤t≤1)g(t)=(t<0)t2-4.3;-4.3;(t>1)第四十三页,共五十三页,编辑于2023年,星期六

例2求f(x)=x2-ax+a在区间[-1,1]上的最值。分析第四十四页,共五十三页,编辑于2023年,星期六

例2求f(x)=x2-ax+a在区间[-1,1]上的最值。分析解:f(x)=(x-)2+a-,对称轴为x=

(1)若,即a≤-2时,f(x)min=f(-1)=1+2a,f(x)max=f(1)=1;

(4)若,即a≥2时,f(x)min=f(1)=1,f(x)max=f(-1)=1+2a;

(2)若-1<<0,即-2<a<0时,f(x)min=f()=a-a2/4,f(x)max=f(1)=1;

(3)若0≤<1,即0≤a<2时,f(x)min=f()=a-a2/4,f(x)max=f(-1)=1+2a;第四十五页,共五十三页,编辑于2023年,星期六一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的,都有;(2)存在,使得那么,我们称M是函数y=f(x)的最大值(maximumvalue)。四、函数的最大值注意:①函数最大(小)首先应该是某一个函数值,即存在,使得;②函数最大(小)应该是所有函数值中最大(小)的,即对于任意的,都有.第四十六页,共五十三页,编辑于2023年,星期六例1:“菊花”烟花是最壮观的烟花之一。制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度hm与时间ts之间的关系为,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1m)?第四十七页,共五十三页,编辑于2023年,星期六分析:由函数的图象可知,函数在区间[2,6]上递减.所以,函数在区间[2,6]的两个端点上分别取得最大值和最小值。第四十八页,共五十三页,编辑于2023年,星期六(一)创设情景,揭示课题.画出下列函数的图象,指出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论