版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省宜春市经楼中学2022年高一数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数的定义域是()A.[2,3) B.(3,+∞) C.[2,3)∪(3,+∞) D.(2,3)∪(3,+∞)参考答案:C【考点】函数的定义域及其求法.【专题】计算题.【分析】由函数解析式列出关于不等式组,求出它的解集就是所求函数的定义域.【解答】解:要使函数有意义,则,解得x≥2且x≠3,∴函数的定义域是[2,3)∪(3,+∞).故选C.【点评】本题的考点是求函数的定义域,即根据偶次被开方数大于等于零,分母不为零,对数的真数大于零等等,列出不等式求出它们的解集的交集即可.2.下面四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形是()
A.①②
B.①④
C.②③
D.③④参考答案:A略3.若,则(
)A.
B.
C.
D.参考答案:C略4.某公司生产甲、乙两种桶装产品,已知生产甲产品1桶需耗A原料2千克,B原料3千克;生产乙产品1桶需耗A原料2千克,B原料1千克,每桶甲产品的利润是300元,每桶乙产品的利润是400元,公司在要求每天消耗A,B原料都不超过12千克的条件下,生产产品甲、产品乙的利润之和的最大值为(
)A.1800元
B.2100元
C.2400元
D.2700元参考答案:C设分别生产甲乙两种产品为桶,桶,利润为元,则根据题意可得
,作出不等式组表示的平面区域,如图所示,作直线,然后把直线向可行域平移,可得,此时最大,故选C.
5.(log227)?(log34)=()A. B.2 C.3 D.6参考答案:D【考点】对数的运算性质.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用对数性质、运算法则和换底公式求解.【解答】解:(log227)?(log34)===6.故答案为:6.【点评】本题考查对数化简求值,是基础题,解题时要认真审题,注意对数性质、运算法则、换底公式的合理运用.6.函数(且)的图象恒过定点
(
)
A.
B.
C.
D.参考答案:C7.下列函数中,既是奇函数,又在上为增函数的是(
)A.
B.
C.
D.参考答案:D8.的值为()A.B.C.-D.-参考答案:A9.已知数列的前项和(是不为0的实数),那么
(
)A.一定是等差数列
B.一定是等比数列C.或者是等差数列,或者是等比数列D.既不可能是等差数列,也不可能是等比数列
参考答案:C略10.数列:、3、、9、…的一个通项公式是()
()()
()参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.中,,,,则_______,_______,_______参考答案:、、
12.正项数列{an},a1=1,前n项和Sn满足,则sn=.参考答案:【考点】8E:数列的求和.【分析】正项数列{an},a1=1,前n项和Sn满足,可得:﹣=2,利用等差数列的通项公式即可得出.【解答】解:∵正项数列{an},a1=1,前n项和Sn满足,∴﹣=2,∴数列是等差数列,首项为1,公差为2.∴=1+2(n﹣1)=2n﹣1.∴Sn=.故答案为:.13.已知向量=(﹣1,2),=(m,1),若向量+与垂直,则m=.参考答案:7【考点】9T:数量积判断两个平面向量的垂直关系.【分析】利用平面向量坐标运算法则先求出,再由向量+与垂直,利用向量垂直的条件能求出m的值.【解答】解:∵向量=(﹣1,2),=(m,1),∴=(﹣1+m,3),∵向量+与垂直,∴()?=(﹣1+m)×(﹣1)+3×2=0,解得m=7.故答案为:7.14.设x,y∈R+且x+y=2,则+的最小值为.参考答案:【考点】7F:基本不等式.【分析】利用“乘1法”和基本不等式的性质即可得出.【解答】解:∵x,y∈R+且x+y=2,∴+===,当且仅当=时取等号.∴+的最小值为.故答案为:.15.某班50名学生参加跳远、铅球两项测试,成绩及格人数分别为40人和31人,两项测试均不及格的人数是4人,则两项测试都及格的有
人.参考答案:25.16.已知f(x)=是(﹣∞,+∞)上的减函数,那么a的取值范围是
.参考答案:≤a<【考点】分段函数的解析式求法及其图象的作法;函数单调性的性质;对数函数的单调性与特殊点.【专题】计算题;压轴题.【分析】由分段函数的性质,若f(x)=是(﹣∞,+∞)上的减函数,则分段函数在每一段上的图象都是下降的,且在分界点即x=1时,第一段函数的函数值应大于等于第二段函数的函数值.由此不难判断a的取值范围.【解答】解:∵当x≥1时,y=logax单调递减,∴0<a<1;而当x<1时,f(x)=(3a﹣1)x+4a单调递减,∴a<;又函数在其定义域内单调递减,故当x=1时,(3a﹣1)x+4a≥logax,得a≥,综上可知,≤a<.故答案为:≤a<【点评】分段函数分段处理,这是研究分段函数图象和性质最核心的理念,具体做法是:分段函数的定义域、值域是各段上x、y取值范围的并集,分段函数的奇偶性、单调性要在各段上分别论证;分段函数的最大值,是各段上最大值中的最大者.17..如图给出的是计算的值的一个程序框图,则判断内的整数a=______.参考答案:6【分析】由已知中该程序的功能是计算的值,最后一次循环的终值是,即小于满足循环,由循环变量的初值是,步长为2,由此可得出a的值.【详解】,,;,,;,,;…依次类推,,,;,,,则判断框内应填入条件是.故答案为6.【点睛】本题考查算法和程序框图。正确掌握程序框图的含义和识别程序框图的功能是解题的关键.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(10分)已知二次函数f(x)=ax2+bx+c(a,b,c为常数),满足条件(1)图象过原点;(2)f(1+x)=f(1﹣x);(3)方程f(x)=x有两个不等的实根试求f(x)的解析式并求x∈[﹣1,4]上的值域.参考答案:考点: 二次函数的性质;函数的值域.专题: 函数的性质及应用.分析: 由(1)便得到c=0,而根据(2)知x=1是f(x)的对称轴,所以得到b=﹣2a,所以f(x)=ax2﹣2ax.所以方程ax2﹣(2a+1)x=0有两个相等实根0,所以可得到,a=,所以求得f(x)=,根据二次函数的图象即可求得该函数在[﹣1,4]上的值域.解答: 由(1)得,c=0;由(2)知,f(x)的对称轴为x=1,∴,b=﹣2a;∴f(x)=ax2﹣2ax;∴由(3)知,ax2﹣(2a+1)x=0有两个相等实根;∴;∴;∴=;∴f(x)在[﹣1,4]上的值域为[f(4),f(1)]=[﹣4,].点评: 考查曲线上点的坐标和曲线方程的关系,根据f(1+x)=f(1﹣x)能得出二次函数f(x)的对称轴,以及解一元二次方程,根据二次函数的图象或二次函数图象上的点到对称轴的距离求二次函数在闭区间上的值域.19.掷一枚硬币三次,观察正反面出现的情况,可能出现的结果有几种情况?参考答案:可能出现8种情况:正、正、正;正、正、反;正、反、正;正、反、反;反、正、正;反、正、反;反、反、正;反、反、反.20.某校办工厂生产学生校服的固定成本为20000元,每生产一件需要增加投入100元,已知总收益R(x)满足函数R(x)=,其中x是校服的月产量,问:(1)将利润表示为关于月产量x的函数f(x);(2)当月产量为何值时,工厂所获利润最大?最大利润为多少元?(总收益=总成本+利润).参考答案:【考点】函数模型的选择与应用.【分析】(1)由题意,由总收益=总成本+利润可知,分0≤x≤400及x>400求利润,利用分段函数表示;(2)在0≤x≤400及x>400分别求函数的最大值或取值范围,从而确定函数的最大值.从而得到最大利润.【解答】解:(1)由题意,当0≤x≤400时,f(x)=400x﹣0.5x2﹣20000﹣100x=300x﹣0.5x2﹣20000;当x>400时,f(x)=80000﹣100x﹣20000=60000﹣100x;故f(x)=;(2)当0≤x≤400时,f(x)=300x﹣0.5x2﹣20000;当x==300时,f(x)max=25000;当x>400时,f(x)=60000﹣100x<60000﹣40000=20000;故当月产量为300件时,工厂所获利润最大,最大利润为25000元.21.已知正项数列{an}的前n项和为Sn,对任意,点都在函数的图象上.(1)求数列{an}的通项公式;(2)若数列,求数列{bn}的前n项和Tn;(3)已知数列{cn}满足,若对任意,存在使得成立,求实数a的取值范围.参考答案:(1);(2);(3).【分析】(1)将点代入函数的解析式得到,令,由可求出的值,令,由得,两式相减得出数列为等比数列,确定该数列的公比,利用等比数列的通项公式可求出数列的通项公式;(2)求出数列的通项公式,利用错位相减法求出数列的前项和;(3)利用分组求和法与裂项法求出数列的前项和,由题意得出,判断出数列各项的符号,得出数列的最大值为,利用函数的单调性得出该函数在区间上的最大值为,然后解不等式可得出实数的取值范围.【详解】(1)将点代入函数的解析式得到.当时,,即,解得;当时,由得,上述两式相减得,得,即.所以,数列是以2为首项,以2为公比的等比数列,因此,;(2),,因此,①,②由①②得,所以;(3).令为的前项和,则.因为,,,,当时,,令,,令,则,当时,,此时,数列为单调递减数列,,则,即,那么当时,数列为单调递减数列,此时,则.因此,数列的最大值为.又,函数单调递增,此时,函数的最大值为.因为对任意的,存在,.所以,解得,因此,实数的取值范围是.【点睛】本题考查利用等比数列前项和求数列通项,同时也考查了错位相减法求和以及数列不等式恒成立问题,解题时要充分利用数列的单调性求出数列的最大项或最小项的值,考查化归与转化思想的应用,属于难题.22.若不等式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度房地产经纪代理注销合同书4篇
- 二零二五年度房产证租赁备案及合同登记服务合同4篇
- 美容院2025年度美容师职业发展规划与晋升合同4篇
- 2025年度二手车交易双方权益保障协议4篇
- 二零二五年度中小企业信用贷款分期还款协议
- 2025年度煤炭运输保险合同参考范本4篇
- 《LAMP原理及应用》课件
- 2025年度城市综合体地下停车位租赁及管理服务合同
- 2025年度苗木种植与金融服务合作协议4篇
- 二零二五年度门窗安装与智能家居系统集成合同4篇
- 2025年病案编码员资格证试题库(含答案)
- 企业财务三年战略规划
- 提高脓毒性休克患者1h集束化措施落实率
- 山东省济南市天桥区2024-2025学年八年级数学上学期期中考试试题
- 主播mcn合同模板
- 新疆2024年中考数学试卷(含答案)
- 2024测绘个人年终工作总结
- DB11 637-2015 房屋结构综合安全性鉴定标准
- 制造业生产流程作业指导书
- DB34∕T 4444-2023 企业信息化系统上云评估服务规范
- 福建中闽能源股份有限公司招聘笔试题库2024
评论
0/150
提交评论