山东省日照市开发区中学高二数学理月考试题含解析_第1页
山东省日照市开发区中学高二数学理月考试题含解析_第2页
山东省日照市开发区中学高二数学理月考试题含解析_第3页
山东省日照市开发区中学高二数学理月考试题含解析_第4页
山东省日照市开发区中学高二数学理月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省日照市开发区中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.双曲线的渐近线方程是(

)A.

B.

C.

D.参考答案:A略2.若函数在[1,+∞)上是单调函数,则a的取值范围是()A. B. C. D.(﹣∞,1]参考答案:B【考点】6B:利用导数研究函数的单调性.【分析】由求导公式和法则求出f′(x),由条件和导数与函数单调性的关系分类讨论,分别列出不等式进行分离常数,再构造函数后,利用整体思想和二次函数的性质求出函数的最值,可得a的取值范围.【解答】解:由题意得,f′(x)=,因为在[1,+∞)上是单调函数,所以f′(x)≥0或f′(x)≤0在[1,+∞)上恒成立,①当f′(x)≥0时,则在[1,+∞)上恒成立,即a≥,设g(x)==,因为x∈[1,+∞),所以∈(0,1],当=1时,g(x)取到最大值是:0,所以a≥0,②当f′(x)≤0时,则在[1,+∞)上恒成立,即a≤,设g(x)==,因为x∈[1,+∞),所以∈(0,1],当=时,g(x)取到最大值是:,所以a≤,综上可得,a≤或a≥0,所以数a的取值范围是(﹣∞,]∪[0,+∞),故选:B.3.观察下列各图,其中两个分类变量之间关系最强的是(

)A.

B.

C.

D.参考答案:D4.函数图象交点的横坐标所在区间是()A.(1,2) B.(2,3) C.(3,4) D.(1,5)参考答案:C试题分析:设的零点在区间与图象交点的横坐标所在区间是,故选C.考点:曲线的交点.【方法点晴】本题考曲线的交点,涉及数形结合思想、函数与方程思想和转化化归思想,以及逻辑思维能力、等价转化能力、运算求解能力、综合程度高,属于较难题型.设的零点在区间与图象交点的横坐标所在区间是5.如果直线与直线平行,则的值为(

)A.3

B.-3

C.5

D.0参考答案:B6.设

则()

D.不存在参考答案:C7.已知命题p:?x∈R,cosx=;命题q:?x∈R,x2﹣x+1>0.则下列结论正确的是(

)A.命题p∧q是真命题 B.命题p∧¬q是真命题C.命题¬p∧q是真命题 D.命题¬p∨¬q是假命题参考答案:C【考点】复合命题的真假.【专题】计算题;综合题.【分析】根据余弦函数的值域,可知命题p是假命题,根据二次函数的图象与性质,得命题q是真命题.由此对照各个选项,可得正确答案.【解答】解:因为对任意x∈R,都有cosx≤1成立,而>1,所以命题p:?x∈R,cosx=是假命题;∵对任意的∈R,x2﹣x+1=(x﹣)2+>0∴命题q:?x∈R,x2﹣x+1>0,是一个真命题由此对照各个选项,可知命题¬p∧q是真命题故答案为:C【点评】本题以复合命题真假的判断为载体,考查了余弦函数的值域和一元二次不等式恒成立等知识,属于基础题.8.若a、b为实数,则“”是“”的(

)A.充分而不必要条件

B.必要而不充分条件C.充要条件

D.既不充分也不必要条件参考答案:B9.下列函数中既不是奇函数也不是偶函数的是()A.B.C.D.参考答案:D略10.如图,△ABC为三角形,AA′∥BB′∥CC′,CC′⊥平面ABC且3AA′=BB′=CC′=AB,则多面体△ABC﹣A′B′C′的正视图(也称主视图)是()A. B. C. D.参考答案:D【考点】简单空间图形的三视图.【分析】根据几何体的三视图的作法,结合图形的形状,直接判定选项即可.【解答】解:△ABC为三角形,AA′∥BB′∥CC′,CC′⊥平面ABC,且3AA′=BB′=CC′=AB,则多面体△ABC﹣A′B′C′的正视图中,CC′必为虚线,排除B,C,3AA′=BB′说明右侧高于左侧,排除A.故选D二、填空题:本大题共7小题,每小题4分,共28分11.在二项式的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,则有理项互不相邻的概率为__________(用最简分数表示).参考答案:由题意可知,展开式的通项为:(0,1,2,…,),则有,得.则当时,为整数,即在展开式的9项中,有3项为有理项,则所求的概率为12.函数f(x)=在点P(0,1)处的切线方程为

.参考答案:x﹣y+1=0【考点】利用导数研究曲线上某点切线方程.【分析】求得函数的导数,求出切线的斜率k,利用斜截式方程即可得到切线方程.【解答】解:f(x)=的导函数为f′(x)=,可知函数f(x)在x=0处的切线斜率为k=1,即有函数f(x)=在点P(0,1)处的切线方程为y=x+1,即x﹣y+1=0.故答案为:x﹣y+1=0.13.已知两条不同直线、,两个不同平面、,给出下列命题:①若垂直于内的两条相交直线,则⊥;②若∥,则平行于内的所有直线;③若,且⊥,则⊥;④若,,则⊥;⑤若,且∥,则∥.其中正确命题的序号是

.(把你认为正确命题的序号都填上)参考答案:①④(漏选一个扣两分)略14.采用系统抽样从含有8000个个体的总体(编号为0000,0001,…,,7999)中抽取一个容量为50的样本,已知最后一个入样编号是7900,则最前面2个入样编号是

参考答案:0060,0220

15.已知(﹣)n展开式中所有项的二项式系数和为32,则其展开式中的常数项为.参考答案:﹣80【考点】DB:二项式系数的性质.【分析】由条件求得n=5,在展开式的通项公式中,令x的幂指数等于零,求得r的值,可得展开式中的常数项.【解答】解:由题意可得2n=32,∴n=5,∴(﹣)n=(﹣)5展开式的通项公式为Tr+1=?(﹣2)r?.令=0,求得r=3,∴展开式中的常数项为?(﹣2)3=﹣80,故答案为:﹣80.16.已知直线的极坐标方程sin(+)=,则极点到该直线的距离为________.参考答案:略17.对于命题:如果是线段上一点,则;将它类比到平面的情形是:若是

内一点,有;将它类比到空间的情形应该是:若是四面体内一点,则有_

.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(2015秋?成都校级月考)(文科)如图,已知抛物线C:y=x2,点P(x0,y0)为抛物线上一点,y0∈[3,5],圆F方程为x2+(y﹣1)2=1,过点P作圆F的两条切线PA,PB分别交x轴于点M,N,切点分别为A,B.①求四边形PAFB面积的最大值.②求线段MN长度的最大值.参考答案:【考点】抛物线的简单性质.

【专题】综合题;圆锥曲线的定义、性质与方程.【分析】①四边形PAFB面积S=2S△APF=2,求出|AP|的最大值,即可求四边形PAFB面积的最大值.②求出M,N的坐标,表示出|MN|,即可求线段MN长度的最大值.【解答】解:①设P(x0,x02),则x02∈[3,5],x02∈[12,20],由题意,∠FAP=90°,∠FBP=90°,△AFP中,|AP|==,令x02=t∈[12,20],则|AP|=,四边形PAFB面积S=2S△APF=2=,最大值为,此时x02=20,即y0=5时取到;②设P(x0,x02),则圆的切线方程为y﹣x02=k(x﹣x0).由点到直线的距离公式可得=1∴(x02﹣1)k+2x0(1﹣x02)k+(1﹣x02)2﹣1=0,设两根为k1,k2,则k1+k2=﹣,k1k2=,∵M(x0﹣x02,0),N(x0﹣x02,0),∴|MN|=x02|﹣|=2?(x02=t∈[12,20],t﹣8=m∈[4,12])∴|MN|=2?,令=p∈[,],∴|MN|=2,最大值为2,p=,即y0=3时取到.【点评】本题考查圆锥曲线的综合,考查四边形面积的计算,考查韦达定理的运用,考查学生分析解决问题的能力,属于中档题.19.(12分)某高校在2014年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下左图所示.(1)请先求出频率分布表中①、②位置相应的数据,再在答题卷上完成下列频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?组号分组频数频率第1组[160,165)50.050第2组[165,170)①0.350第3组[170,175)30②第4组[175,180)200.200第5组[180,185)100.100合计1001.00参考答案:(Ⅰ)由题可知,第2组的频数为人,第3组的频率为,频率分布直方图如下:(Ⅱ)因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组分别为:第3组:人,第4组:人,第5组:人,所以第3、4、5组分别抽取3人、2人、1人。20.(本小题满分12分)已知函数.(Ⅰ)当时,求函数的极值;(Ⅱ)若函数在区间上是减函数,求实数a的取值范围;(Ⅲ)当时,函数图象上的点都在所表示的平面区域内,求实数的取值范围.参考答案:21.已知双曲线与椭圆=1有公共焦点F1,F2,它们的离心率之和为2.(1)求双曲线的标准方程;(2)设P是双曲线与椭圆的一个交点,求cos∠F1PF2.参考答案:【考点】双曲线的简单性质.【分析】(1)由于椭圆焦点为F(0,±4),离心率为e=,可得双曲线的离心率为2,结合双曲线与椭圆=1有公共焦点F1,F2,求出a,b,c.最后写出双曲线的标准方程;(2)求出|PF1|=7,|PF2|=3,|F1F2|=8,利用余弦定理,即可求cos∠F1PF2.【解答】解:(1)椭圆=1的焦点为(0,±4),离心率为e=.∵双曲线与椭圆的离心率之和为2,∴双曲线的离心率为2,∴=2∵双曲线与椭圆=1有公共焦点F1,F2,∴c=4,∴a=2,b=,∴双曲线的方程是;(2)由题意,|PF1|+|PF2|=10,|PF1|﹣|PF2|=4∴|PF1|=7,|PF2|=3,∵|F1F2|=8,∴cos∠F1PF2==﹣.22.如图所示,在四棱锥P﹣ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是CD上的点且,PH为△PAD中AD边上的高.(1)证明:PH⊥平面ABCD;(2)若PH=1,,FC=1,求三棱锥E﹣BCF的体积;(3)证明:EF⊥平面PAB.参考答案:【考点】直线与平面垂直的判定;棱柱、棱锥、棱台的体积.【分析】(1)因为AB⊥平面PAD,所以PH⊥AB,因为PH为△PAD中AD边上的高,所以PH⊥AD,由此能够证明PH⊥平面ABCD.(2)连接BH,取BH中点G,连接EG,因为E是PB的中点,所以EG∥PH,因为PH⊥平面ABCD,所以EG⊥平面ABCD,由此能够求出三棱锥E﹣BCF的体积.(3)取PA中点M,连接MD,ME,因为E是PB的中点,所以,因为ME,所以MEDF,故四边形MEDF是平行四边形.由此能够证明EF⊥平面PAB.【解答】解:(1)证明:∵AB⊥平面PAD,∴PH⊥AB,∵PH为△PAD中AD边上的高,∴PH⊥AD,∵AB∩AD=A,∴PH⊥平面A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论