浙江省温州市黄坦中学2022-2023学年高一数学文期末试题含解析_第1页
浙江省温州市黄坦中学2022-2023学年高一数学文期末试题含解析_第2页
浙江省温州市黄坦中学2022-2023学年高一数学文期末试题含解析_第3页
浙江省温州市黄坦中学2022-2023学年高一数学文期末试题含解析_第4页
浙江省温州市黄坦中学2022-2023学年高一数学文期末试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省温州市黄坦中学2022-2023学年高一数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设集合,集合,则A∩B=(

)A. B.C. D.参考答案:D【分析】先化简集合A,B,再求A∩B得解.【详解】由题得,,所以,故选:D.【点睛】本题主要考查集合的化简和交集运算,考查一元二次不等式的解法和对数函数的定义域,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.函数的零点所在的区间为

A.(0,1)

B.(1,2)

C.(2,3)

D.(3,4)参考答案:B3.已知幂函数的图象过(4,2)点,则(

)(A)

(B)2

(C)4

(D)参考答案:A由题意可设,又函数图象过定点(4,2),,,从而可知,则.故选A

4.设l为直线,α,β是两个不同的平面,下列命题中正确的是()A.若l∥α,l∥β,则α∥β B.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥β D.若α⊥β,l∥α,则l⊥β参考答案:B【考点】空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系;平面与平面之间的位置关系.【分析】根据线面平行的几何特征及面面平行的判定方法,可判断A;根据面面平行的判定方法及线面垂直的几何特征,可判断B;根据线面平行的性质定理,线面垂直及面面垂直的判定定理,可判断C;根据面面垂直及线面平行的几何特征,可判断D.【解答】解:若l∥α,l∥β,则平面α,β可能相交,此时交线与l平行,故A错误;若l⊥α,l⊥β,根据垂直于同一直线的两个平面平行,可得B正确;若l⊥α,l∥β,则存在直线m?β,使l∥m,则m⊥α,故此时α⊥β,故C错误;若α⊥β,l∥α,则l与β可能相交,可能平行,也可能线在面内,故D错误;故选B5.执行如图所示的程序框图,则输出S的值是()A.36 B.40 C.44 D.48参考答案:B【考点】程序框图.【专题】计算题;规律型;对应思想;分析法;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的S,x,f(x)的值,观察S的取值规律,当x=11时满足条件x>10,退出循环,输出S的值,即可得解.【解答】解:模拟执行程序框图,可得S=0,x=1f(x)=2,不满足条件x>10,S=4,x=2,f(x)=,不满足条件x>10,S=4++=8,x=3,f(x)=,不满足条件x>10,S=8++=12,x=4,f(x)=,f()=,不满足条件x>10,S=12++=16,x=5,f(x)=,f()=,不满足条件x>10,S=16++=20,x=6,f(x)=,f()=,不满足条件x>10,S=20++=24,x=7,f(x)=,f()=,不满足条件x>10,S=24++=28,x=8,…观察规律可得:不满足条件x>10,S=32,x=9,…不满足条件x>10,S=36,x=10,…不满足条件x>10,S=40,x=11,…满足条件x>10,退出循环,输出S的值为40.故选:B.【点评】本题主要考查了循环结构的程序框图,正确写出每次循环得到的S,x,f(x)的值,观察S的取值规律是解题的关键,属于基本知识的考查.6.化简的值是

)A.

B.

C.

D.

参考答案:D略7.在下列各图中,每个图的两个变量具有相关关系的图是()A.(1)(2)B.(1)(3)C.(2)(4)D.(2)(3)参考答案:D8.要使函数在上恒成立,则实数a的取值范围是(

)A.

B.

C.

D.参考答案:C令,原问题等价于在区间上恒成立,分离参数有:,则,,结合二次函数的性质可知当时,,即实数的取值范围是.本题选择C选项.

9.如果函数f(x)的定义域为[﹣1,1],那么函数f(x2﹣1)的定义域是()A.[0,2] B.[﹣1,1] C.[﹣2,2] D.[﹣,]参考答案:D【考点】函数的定义域及其求法.【分析】函数f(x)的定义域为[﹣1,1],可得﹣1≤x2﹣1≤1,解出即可得出.【解答】解:∵函数f(x)的定义域为[﹣1,1],由﹣1≤x2﹣1≤1,解得.∴函数f(x2﹣1)的定义域是.故选:D.10.数列的通项为=,,其前项和为,则使>48成立的的最小值为(

A.7

B.8

C.9

D.10参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.已知点,,若圆上恰有两点,,使得和的面积均为,则的取值范围是

.参考答案:12.已知关于的方程在区间上存在两个根,则实数的取值范围是_________.参考答案:[2,3)

略13.不等式的解集是

参考答案:14.若函数的图像恒过定点,则

。参考答案:略15.若不等式x2+(a+2)x+1≥0的解集为R,则实数a的取值范围是

.参考答案:[-4,0]略16.在△ABC中,若,,则

.A. B. C. D.参考答案:B【分析】利用正弦定理可求得,,;代入所求式子可整理得到结果.【详解】由正弦定理可知:,,本题正确选项:B【点睛】本题考查正弦定理的应用,属于基础题.17.已知函数的图象为曲线,函数的图象为曲线,可将曲线沿轴向右至少平移

个单位,得到曲线.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=(1)求函数f(x)的最小正周期;’(2)将函数y=f(x)的图象向下平移个单位,再将图象上各点的纵坐标伸长到原来的2倍(横坐标不变),得到函数y=g(x)的图象,求使g(x)>成立的x的取值集合.参考答案:【考点】函数y=Asin(ωx+φ)的图象变换;三角函数的周期性及其求法.【分析】(1)利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性,求得它的最小正周期.(2)利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用正弦函数的图象特征,求得g(x)>的解集.【解答】解:(1)函数f(x)==cosx(sinx+cosx)=sin2x+=sin(2x+)+,∴它的最小正周期为=π.(2)将函数y=f(x)的图象向下平移个单位,可得函数y=sin(2x+)的图象;再将图象上各点的纵坐标伸长到原来的2倍(横坐标不变),得到函数y=g(x)=sin(2x+)的图象,由g(x)>,可得sin(2x+)>,∴2kπ+<2x+<2kπ+,求得kπ<x<kπ+,故使不等式成立的x的取值集合为(kπ,kπ+),k∈Z.19.(本大题满分12分,每小题6分)参考答案:(本题满分12分,每小题6分)ks5u略20.(10分)已知正方体ABCD﹣A1B1C1D1,O是底ABCD对角线的交点.求证:(1)C1O∥面AB1D1;(2)A1C⊥面AB1D1.参考答案:考点: 空间中直线与平面之间的位置关系.专题: 证明题.分析: (1)欲证C1O∥面AB1D1,根据直线与平面平行的判定定理可知只需证C1O与面AB1D1内一直线平行,连接A1C1,设A1C1∩B1D1=O1,连接AO1,易得C1O∥AO1,AO1?面AB1D1,C1O?面AB1D1,满足定理所需条件;(2)欲证A1C⊥面AB1D1,根据直线与平面垂直的判定定理可知只需证A1C与面AB1D1内两相交直线垂直根据线面垂直的性质可知A1C⊥B1D1,同理可证A1C⊥AB1,又D1B1∩AB1=B1,满足定理所需条件.解答: 证明:(1)连接A1C1,设A1C1∩B1D1=O1,连接AO1,∵ABCD﹣A1B1C1D1是正方体,∴A1ACC1是平行四边形,∴A1C1∥AC且A1C1=AC,又O1,O分别是A1C1,AC的中点,∴O1C1∥AO且O1C1=AO,∴AOC1O1是平行四边形,∴C1O∥AO1,AO1?面AB1D1,C1O?面AB1D1,∴C1O∥面AB1D1;(2)∵CC1⊥面A1B1C1D1∴CC1⊥B1D!,又∵A1C1⊥B1D1,∴B1D1⊥面A1C1C,即A1C⊥B1D1,∵A1B⊥AB1,BC⊥AB1,又A1B∩BC=B,AB1⊥平面A1BC,又A1C?平面A1BC,∴A1C⊥AB1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论