




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北衡中同卷数学高三第一学期期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数z=2i1-i,则A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知复数满足,(为虚数单位),则()A. B. C. D.33.已知数列满足:)若正整数使得成立,则()A.16 B.17 C.18 D.194.函数f(x)=lnA. B. C. D.5.某公园新购进盆锦紫苏、盆虞美人、盆郁金香,盆盆栽,现将这盆盆栽摆成一排,要求郁金香不在两边,任两盆锦紫苏不相邻的摆法共()种A. B. C. D.6.执行如图所示的程序框图,如果输入,则输出属于()A. B. C. D.7.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙8.已知直线y=k(x+1)(k>0)与抛物线C相交于A,B两点,F为C的焦点,若|FA|=2|FB|,则|FA|=()A.1 B.2 C.3 D.49.若双曲线:的一条渐近线方程为,则()A. B. C. D.10.如图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是()A.2017年第一季度GDP增速由高到低排位第5的是浙江省.B.与去年同期相比,2017年第一季度的GDP总量实现了增长.C.2017年第一季度GDP总量和增速由高到低排位均居同一位的省只有1个D.去年同期河南省的GDP总量不超过4000亿元.11.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为,若低于60分的人数是18人,则该班的学生人数是()A.45 B.50 C.55 D.6012.已知P是双曲线渐近线上一点,,是双曲线的左、右焦点,,记,PO,的斜率为,k,,若,-2k,成等差数列,则此双曲线的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,则=___________,_____________________________14.如图梯形为直角梯形,,图中阴影部分为曲线与直线围成的平面图形,向直角梯形内投入一质点,质点落入阴影部分的概率是_____________15.已知,则_____16.若满足约束条件,则的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)正项数列的前n项和Sn满足:(1)求数列的通项公式;(2)令,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有Tn<.18.(12分)在直角坐标系中,直线的参数方程为(为参数),直线的参数方程为,(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(Ⅰ)求的极坐标方程和的直角坐标方程;(Ⅱ)设分别交于两点(与原点不重合),求的最小值.19.(12分)已知函数.(1)证明:当时,;(2)若函数只有一个零点,求正实数的值.20.(12分)如图,在四棱锥中,底面,,,,,点为棱的中点.(1)证明::(2)求直线与平面所成角的正弦值;(3)若为棱上一点,满足,求二面角的余弦值.21.(12分)已知圆M:及定点,点A是圆M上的动点,点B在上,点G在上,且满足,,点G的轨迹为曲线C.(1)求曲线C的方程;(2)设斜率为k的动直线l与曲线C有且只有一个公共点,与直线和分别交于P、Q两点.当时,求(O为坐标原点)面积的取值范围.22.(10分)已知数列满足,.(1)求数列的通项公式;(2)若,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:根据复数的运算,求得复数z,再利用复数的表示,即可得到复数对应的点,得到答案.详解:由题意,复数z=2i1-i所以复数z在复平面内对应的点的坐标为(-1,-1),位于复平面内的第三象限,故选C.点睛:本题主要考查了复数的四则运算及复数的表示,其中根据复数的四则运算求解复数z是解答的关键,着重考查了推理与运算能力.2、A【解题分析】,故,故选A.3、B【解题分析】
计算,故,解得答案.【题目详解】当时,,即,且.故,,故.故选:.【题目点拨】本题考查了数列的相关计算,意在考查学生的计算能力和对于数列公式方法的综合应用.4、C【解题分析】因为fx=lnx2-4x+4x-23=5、B【解题分析】
间接法求解,两盆锦紫苏不相邻,被另3盆隔开有,扣除郁金香在两边有,即可求出结论.【题目详解】使用插空法,先排盆虞美人、盆郁金香有种,然后将盆锦紫苏放入到4个位置中有种,根据分步乘法计数原理有,扣除郁金香在两边,排盆虞美人、盆郁金香有种,再将盆锦紫苏放入到3个位置中有,根据分步计数原理有,所以共有种.故选:B.【题目点拨】本题考查排列应用问题、分步乘法计数原理,不相邻问题插空法是解题的关键,属于中档题.6、B【解题分析】
由题意,框图的作用是求分段函数的值域,求解即得解.【题目详解】由题意可知,框图的作用是求分段函数的值域,当;当综上:.故选:B【题目点拨】本题考查了条件分支的程序框图,考查了学生逻辑推理,分类讨论,数学运算的能力,属于基础题.7、A【解题分析】
利用逐一验证的方法进行求解.【题目详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A.【题目点拨】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.8、C【解题分析】
方法一:设,利用抛物线的定义判断出是的中点,结合等腰三角形的性质求得点的横坐标,根据抛物线的定义求得,进而求得.方法二:设出两点的横坐标,由抛物线的定义,结合求得的关系式,联立直线的方程和抛物线方程,写出韦达定理,由此求得,进而求得.【题目详解】方法一:由题意得抛物线的准线方程为,直线恒过定点,过分别作于,于,连接,由,则,所以点为的中点,又点是的中点,则,所以,又所以由等腰三角形三线合一得点的横坐标为,所以,所以.方法二:抛物线的准线方程为,直线由题意设两点横坐标分别为,则由抛物线定义得又①②由①②得.故选:C【题目点拨】本小题主要考查抛物线的定义,考查直线和抛物线的位置关系,属于中档题.9、A【解题分析】
根据双曲线的渐近线列方程,解方程求得的值.【题目详解】由题意知双曲线的渐近线方程为,可化为,则,解得.故选:A【题目点拨】本小题主要考查双曲线的渐近线,属于基础题.10、C【解题分析】
利用图表中的数据进行分析即可求解.【题目详解】对于A选项:2017年第一季度5省的GDP增速由高到低排位分别是:江苏、辽宁、山东、河南、浙江,故A正确;对于B选项:与去年同期相比,2017年第一季度5省的GDP均有不同的增长,所以其总量也实现了增长,故B正确;对于C选项:2017年第一季度GDP总量由高到低排位分别是:江苏、山东、浙江、河南、辽宁,2017年第一季度5省的GDP增速由高到低排位分别是:江苏、辽宁、山东、河南、浙江,均居同一位的省有2个,故C错误;对于D选项:去年同期河南省的GDP总量,故D正确.故选:C.【题目点拨】本题考查了图表分析,学生的分析能力,推理能力,属于基础题.11、D【解题分析】
根据频率分布直方图中频率=小矩形的高×组距计算成绩低于60分的频率,再根据样本容量求出班级人数.【题目详解】根据频率分布直方图,得:低于60分的频率是(0.005+0.010)×20=0.30,∴样本容量(即该班的学生人数)是60(人).故选:D.【题目点拨】本题考查了频率分布直方图的应用问题,也考查了频率的应用问题,属于基础题12、B【解题分析】
求得双曲线的一条渐近线方程,设出的坐标,由题意求得,运用直线的斜率公式可得,,,再由等差数列中项性质和离心率公式,计算可得所求值.【题目详解】设双曲线的一条渐近线方程为,且,由,可得以为圆心,为半径的圆与渐近线交于,可得,可取,则,设,,则,,,由,,成等差数列,可得,化为,即,可得,故选:.【题目点拨】本题考查双曲线的方程和性质,主要是渐近线方程和离心率,考查方程思想和运算能力,意在考查学生对这些知识的理解掌握水平.二、填空题:本题共4小题,每小题5分,共20分。13、−196−3【解题分析】
由二项式定理及二项式展开式通项得:,令x=1,则1+a0+a1+…+a7=(1+1)×(1-2)7=-2,所以a0+a1+…+a7=-3,得解.【题目详解】由二项式(1−2x)7展开式的通项得,则,令x=1,则,所以a0+a1+…+a7=−3,故答案为:−196,−3.【题目点拨】本题考查二项式定理及其通项,属于中等题.14、【解题分析】
联立直线与抛物线方程求出交点坐标,再利用定积分求出阴影部分的面积,利用梯形的面积公式求出,最后根据几何概型的概率公式计算可得;【题目详解】解:联立解得或,即,,,,,故答案为:【题目点拨】本题考查几何概型的概率公式的应用以及利用微积分基本定理求曲边形的面积,属于中档题.15、【解题分析】
化简得,利用周期即可求出答案.【题目详解】解:,∴函数的最小正周期为6,∴,,故答案为:.【题目点拨】本题主要考查三角函数的性质的应用,属于基础题.16、4【解题分析】
作出可行域如图所示:由,解得.目标函数,即为,平移斜率为-1的直线,经过点时,.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解题分析】
(1)因为数列的前项和满足:,所以当时,,即解得或,因为数列都是正项,所以,因为,所以,解得或,因为数列都是正项,所以,当时,有,所以,解得,当时,,符合所以数列的通项公式,;(2)因为,所以,所以数列的前项和为:,当时,有,所以,所以对于任意,数列的前项和.18、(Ⅰ)直线的极坐标方程为,直线的极坐标方程为,的直角坐标方程为;(Ⅱ)2.【解题分析】
(Ⅰ)由定义可直接写出直线的极坐标方程,对曲线同乘可得:,转化成直角坐标为;(Ⅱ)分别联立两直线和曲线的方程,由得,由得,则,结合三角函数即可求解;【题目详解】(Ⅰ)直线的极坐标方程为,直线的极坐标方程为由曲线的极坐标方程得,所以的直角坐标方程为.(Ⅱ)与的极坐标方程联立得所以.与的极坐标方程联立得所以.所以.所以当时,取最小值2.【题目点拨】本题考查参数方程与极坐标方程的互化,极坐标方程与直角坐标方程的互化,极坐标中的几何意义,属于中档题19、(1)证明见解析;(2).【解题分析】
(1)把转化成,令,由题意得,即证明恒成立,通过导数求证即可(2)直接求导可得,,令,得或,故根据0与的大小关系来进行分类讨论即可【题目详解】证明:(1)令,则.分析知,函数的增区间为,减区间为.所以当时,.所以,即,所以.所以当时,.解:(2)因为,所以.讨论:①当时,,此时函数在区间上单调递减.又,故此时函数仅有一个零点为0;②当时,令,得,故函数的增区间为,减区间为,.又极大值,所以极小值.当时,有.又,此时,故当时,函数还有一个零点,不符合题意;③当时,令得,故函数的增区间为,减区间为,.又极小值,所以极大值.若,则,得,所以,所以当且时,,故此时函数还有一个零点,不符合题意.综上,所求实数的值为.【题目点拨】本题考查不等式的恒成立问题和函数的零点问题,本题的难点在于把导数化成因式分解的形式,如,进而分类讨论,本题属于难题20、(1)证明见解析(2)(3)【解题分析】
(1)根据题意以为坐标原点,建立空间直角坐标系,写出各个点的坐标,并表示出,由空间向量数量积运算即可证明.(2)先求得平面的法向量,即可求得直线与平面法向量夹角的余弦值,即为直线与平面所成角的正弦值;(3)由点在棱上,设,再由,结合,由空间向量垂直的坐标关系求得的值.即可表示出.求得平面和平面的法向量,由空间向量数量积的运算求得两个平面夹角的余弦值,再根据二面角的平面角为锐角即可确定二面角的余弦值.【题目详解】(1)证明:∵底面,,以为坐标原点,建立如图所示的空间直角坐标系,∵,,点为棱的中点.∴,,,,,,.(2),设平面的法向量为.则,代入可得,令解得,即,设直线与平面所成角为,由直线与平面夹角可知所以直线与平面所成角的正弦值为.(3),由点在棱上,设,故,由,得,解得,即,设平面的法向量为,由,得,令,则取平面的法向量,则二面角的平面角满足,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 出口宠物食品合同范本
- 仓库租赁 配送合同范本
- 主力商家合同范本
- 2025年超大型特厚板轧机项目建议书
- 第六课 友谊之树常青 教学设计-2024-2025学年统编版道德与法治七年级上册
- 包装买卖合同范本
- 北京合伙合同范本咨询
- 《认识面积》(教学设计)-2023-2024学年三年级下册数学人教版
- 信用担保借款合同范本你
- 制造珠宝生产订单合同范本
- 2025年重庆三峡担保集团招聘笔试参考题库含答案解析
- 《快递运营》课件-项目一 快递运营认知
- 2024糖尿病酮症酸中毒诊断和治疗课件
- 常见八种疾病
- 胶粘剂基础知识及产品详解(课堂PPT)
- 完整版三措两案范文
- 铁路总公司近期处理的七起突出质量问题的通报
- 常用洪水预报模型介绍
- 援外项目钢结构运输包装作业指导书(共13页)
- 髋关节置换术男性患者留置尿管最佳时机探析和对策
- [爆笑小品校园剧本7人]爆笑小品校园剧本
评论
0/150
提交评论