广东省中山市桂山中学高一数学理模拟试卷含解析_第1页
广东省中山市桂山中学高一数学理模拟试卷含解析_第2页
广东省中山市桂山中学高一数学理模拟试卷含解析_第3页
广东省中山市桂山中学高一数学理模拟试卷含解析_第4页
广东省中山市桂山中学高一数学理模拟试卷含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省中山市桂山中学高一数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设角q的终边经过点P(-3,4),那么sinq+2cosq=(

)A.

B.

C.

D.

参考答案:C略2.数列{an}满足a1=1,a2=2,

2an+1=an+an+2,则数列{an}的前5项和等于A.25

B.20

C.15

D.10参考答案:C3.已知△ABC中,,,,那么角A等于(

)A.135° B.45° C.135°或45° D.90°参考答案:B【分析】先由正弦定理求出,进而得出角,再根据大角对大边,大边对大角确定角.【详解】由正弦定理得:,,∴或,∵,∴,∴,故选B.【点睛】本题主要考查正弦定理的应用以及大边对大角,大角对大边的三角形边角关系的应用。4.函数在区间上有最小值,则函数在区间上是()A.奇函数 B.偶函数 C.减函数 D.增函数参考答案:D【分析】根据二次函数性质可确定;分别在和两种情况下得到的单调性,从而得到在上的单调性.【详解】由题意得:是开口方向向上,对称轴为的二次函数在上有最小值

当时,在,上单调递增

在上为增函数当时,在上单调递减,在上单调递增又

在上为增函数综上所述:在上为增函数本题正确选项:【点睛】本题考查二次函数图象与性质的应用、函数单调性的判断;关键是能够通过二次函数有最值确定对称轴的位置,从而得到参数的范围.5.数列中,,,则(

)A.

B.

C.

D.参考答案:B略6.如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件),若这两组数据的中位数相等,且平均值也相等,则和的值分别为(

)A.3,5

B.5,5

C.3,7

D.5,7参考答案:A7.若且

,则的值是(

);

A.或

B.

C.

D.参考答案:D略8.设f(x)=,则f(f(e))的值为()A.0 B. C.2 D.3参考答案:C【考点】函数的值.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用分段函数的性质求解.【解答】解:∵f(x)=,∴f(e)==,f(f(e))=f()==2.故选:C.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数性质的合理运用.9.已知函数f(x)=x2﹣2x,g(x)=ax+2(a>0),且对任意的x1∈[﹣1,2],都存在x2∈[﹣1,2],使f(x2)=g(x1),则实数a的取值范围是()A.[3,+∞) B.(0,3] C.[,3] D.(0,]参考答案:D【考点】二次函数的性质.【分析】确定函数f(x)、g(x)在[﹣1,2]上的值域,根据对任意的x1∈[﹣1,2]都存在x2∈[﹣1,2],使得g(x1)=f(x2),可g(x)值域是f(x)值域的子集,从而得到实数a的取值范围.【解答】解:∵函数f(x)=x2﹣2x的图象是开口向上的抛物线,且关于直线x=1对称∴x1∈[﹣1,2]时,f(x)的最小值为f(1)=﹣1,最大值为f(﹣1)=3,可得f(x1)值域为[﹣1,3]又∵g(x)=ax+2(a>0),x2∈[﹣1,2],∴g(x)为单调增函数,g(x2)值域为[g(﹣1),g(2)]即g(x2)∈[2﹣a,2a+2]∵对任意的x1∈[﹣1,2]都存在x2∈[﹣1,2],使得g(x1)=f(x2)∴,∴0<a≤,故选:D.10.(4分)直线l过点A(1,2),且不经过第四象限,则直线l的斜率的取值范围() A. [0,] B. [0,1] C. [0,2] D. (0,)参考答案:C考点: 确定直线位置的几何要素.专题: 直线与圆.分析: 由斜率公式数形结合可得.解答: ∵直线l过点A(1,2),∴当直线的倾斜角为0°,斜率k=0;当直线经过原点时,斜率k′=2,当直线在如图的区域时不经过第四象限,∴直线l的斜率的取值范围为[0,2],故选:C点评: 本题考查直线的斜率,属基础题.二、填空题:本大题共7小题,每小题4分,共28分11.设函数的定义域为[3,6],是函数的定义域为

参考答案:12.在等差数列中,若,,则的最大值为

.参考答案:13.设全集,集合,,则

.参考答案:略14.已知△ABC和点P满足,则△PBC与△ABC的面积之比为_______.参考答案:1:4【分析】根据向量加法的平行四边形法则得出P为AC中线的中点,由此可得面积的比值。【详解】,故设,根据向量加法的平行四边形法则,O为线段AC的中点,,则P为线段BO的中点,,,所以。【点睛】本题考查向量加法的平行四边形法则,以及相反向量的几何意义,属于基础题。15.已知函数是幂函数,且当时,是增函数,则实数m的值为

.参考答案:3函数是幂函数,所以,解得或,又当时,是增函数,所以,故,填.

16.若集合,,则=____________参考答案:

17.东方旅社有100张普通客床,每床每夜收租费10元,客床可以全部租出,若每床每夜收费提高1元,便减少5张床租出;再提高1元,又再减少5张床租出,依次变化下去,为了投资少而获利大,每床每夜应提高租金

元参考答案:5三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)满足f(logax)=(x﹣x﹣1),其中a>0,a≠1,(1)讨论f(x)的奇偶性和单调性;(2)对于函数f(x),当x∈(﹣1,1)时,f(1﹣m)+f(﹣2m)<0,求实数m取值的集合;(3)是否存在实数a,使得当x∈(﹣∞,2)时f(x)的值恒为负数?,若存在,求a的取值范围,若不存在,说明理由.参考答案:【考点】函数奇偶性的判断;函数单调性的判断与证明;函数恒成立问题.【分析】(1)利用换元法,求出函数的解析式,再讨论f(x)的奇偶性和单调性;(2)由f(x)是R上的奇函数,增函数,f(1﹣m)+f(﹣2m)<0有﹣1<1﹣m<2m<1,即可求实数m取值的集合;(3)由x<2,得f(x)<f(2),要使f(x)的值恒为负数,则f(2)≤0,求出a的范围,可得结论.【解答】解:(1)令logax=t,则x=at,∴f(t)=(at﹣a﹣t),∴f(x)=(ax﹣a﹣x),…因为f(﹣x)=(a﹣x﹣ax)=﹣f(x),所以f(x)是R上的奇函数;…当a>1时,>0,ax是增函数,﹣a﹣x是增函数所以f(x)是R上的增函数;当0<a<1时,<0,ax是减函数,﹣a﹣x是减函数,所以f(x)是R上的增函数;综上所述,a>0,a≠1,f(x)是R上的增函数…(2)由f(x)是R上的奇函数,增函数,f(1﹣m)+f(﹣2m)<0有﹣1<1﹣m<2m<1,解得<m<

…(3)因为f(x)是R上的增函数,由x<2,得f(x)<f(2),要使f(x)的值恒为负数,则f(2)≤0,即f(2)=(a2﹣a﹣2)≤0解得a<0,与a>0,a≠1矛盾,所以满足条件的实数a不存在.…19.等比数列{an}中,已知.(1)求数列{an}的通项公式an;(2)若分别是等差数列{bn}的第4项和第16项,求数列{bn}的通项公式及前n项和Sn.参考答案:(1);(2)【分析】(1)由等比数列是通项公式求出公比和首项,由此能求出数列的通项公式;(2)由,求出等差数列的公差和首项,从而求出其前n项和.【详解】(1)设的公比为由已知得,解得,所以(2)由(1)得,,则,设的公差为,则有解得从而所以数列的前项和【点睛】在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质是两种数列基本规律的深刻体现,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.20.某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?参考答案:【考点】根据实际问题选择函数类型;函数的最值及其几何意义.【专题】应用题;压轴题.【分析】(Ⅰ)严格按照题中月租金的变化对能租出车辆数的影响列式解答即可;(Ⅱ)从月租金与月收益之间的关系列出目标函数,再利用二次函数求最值的知识,要注意函数定义域优先的原则.作为应用题要注意下好结论.【解答】解:(Ⅰ)当每辆车的月租金定为3600元时,未租出的车辆数为,所以这时租出了88辆车.(Ⅱ)设每辆车的月租金定为x元,则租赁公司的月收益为,整理得.所以,当x=4050时,f(x)最大,最大值为f(4050)=307050,即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大月收益为307050元.【点评】本题以实际背景为出发点,既考查了信息的直接应用,又考查了目标函数法求最值.特别是二次函数的知识得到了充分的考查.在应用问题解答中属于非常常规且非常有代表性的一类问题,非常值得研究.21.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品(百台),其总成本为(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本)。销售收入(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数的解析式(利润=销售收入—总成本);(2)要使工厂有盈利,求产量的范围;(3)工厂生产多少台产品时,可使盈利最多?参考答案:解:(1)由题意得G(x)=2.8+x.∴=R(x)-G(x)=.(2)①当0≤x≤5时,由-0.4x2+3.2x-2.8>0得:x2-8x+7<0,解得1<x<7.所以:1<x≤5.

②当x>5时,由8.2-x>0解得x<8.2.

所以:5<x<8.2.综上得当1<x<8.2时有y>0.答:当产量大于100台,小于820台时,能使工厂有盈利.(3)当x>5时,∵函数递减,∴<=3.2(万元).当0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论