




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届陕西咸阳武功县普集高级中学高三数学第一学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,它历史悠久,风格独特,神兽人们喜爱.下图即是一副窗花,是把一个边长为12的大正方形在四个角处都剪去边长为1的小正方形后剩余的部分,然后在剩余部分中的四个角处再剪出边长全为1的一些小正方形.若在这个窗花内部随机取一个点,则该点不落在任何一个小正方形内的概率是()A. B. C. D.2.已知随机变量满足,,.若,则()A., B.,C., D.,3.某校在高一年级进行了数学竞赛(总分100分),下表为高一·一班40名同学的数学竞赛成绩:555759616864625980889895607388748677799497100999789818060796082959093908580779968如图的算法框图中输入的为上表中的学生的数学竞赛成绩,运行相应的程序,输出,的值,则()A.6 B.8 C.10 D.124.复数在复平面内对应的点为则()A. B. C. D.5.函数的图象向右平移个单位得到函数的图象,并且函数在区间上单调递增,在区间上单调递减,则实数的值为()A. B. C.2 D.6.“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将1到2020这2020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为()A.56383 B.57171 C.59189 D.612427.的二项展开式中,的系数是()A.70 B.-70 C.28 D.-288.若的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为()A.85 B.84 C.57 D.569.已知椭圆的短轴长为2,焦距为分别是椭圆的左、右焦点,若点为上的任意一点,则的取值范围为()A. B. C. D.10.如图,正方体的棱长为1,动点在线段上,、分别是、的中点,则下列结论中错误的是()A., B.存在点,使得平面平面C.平面 D.三棱锥的体积为定值11.若,满足约束条件,则的取值范围为()A. B. C. D.12.2019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为A.96 B.84 C.120 D.360二、填空题:本题共4小题,每小题5分,共20分。13.若关于的不等式在上恒成立,则的最大值为__________.14.展开式中项的系数是__________15.已知向量,,则______.16.验证码就是将一串随机产生的数字或符号,生成一幅图片,图片里加上一些干扰象素(防止),由用户肉眼识别其中的验证码信息,输入表单提交网站验证,验证成功后才能使用某项功能.很多网站利用验证码技术来防止恶意登录,以提升网络安全.在抗疫期间,某居民小区电子出入证的登录验证码由0,1,2,…,9中的五个数字随机组成.将中间数字最大,然后向两边对称递减的验证码称为“钟型验证码”(例如:如14532,12543),已知某人收到了一个“钟型验证码”,则该验证码的中间数字是7的概率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,为坐标原点,点为抛物线的焦点,且抛物线上点处的切线与圆相切于点(1)当直线的方程为时,求抛物线的方程;(2)当正数变化时,记分别为的面积,求的最小值.18.(12分)已知函数.(1)若是的极值点,求的极大值;(2)求实数的范围,使得恒成立.19.(12分)的内角的对边分别为,且.(1)求;(2)若,点为边的中点,且,求的面积.20.(12分)在直角坐标系中,曲线的参数方程为以为极点,轴正半轴为极轴建立极坐标系,设点在曲线上,点在曲线上,且为正三角形.(1)求点,的极坐标;(2)若点为曲线上的动点,为线段的中点,求的最大值.21.(12分)在直角坐标系中,曲线的参数方程为:(其中为参数),直线的参数方程为(其中为参数)(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求曲线的极坐标方程;(2)若曲线与直线交于两点,点的坐标为,求的值.22.(10分)已知定点,,直线、相交于点,且它们的斜率之积为,记动点的轨迹为曲线。(1)求曲线的方程;(2)过点的直线与曲线交于、两点,是否存在定点,使得直线与斜率之积为定值,若存在,求出坐标;若不存在,请说明理由。
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
由几何概型可知,概率应为非小正方形面积与窗花面积的比,即可求解.【题目详解】由题,窗花的面积为,其中小正方形的面积为,所以所求概率,故选:D【题目点拨】本题考查几何概型的面积公式的应用,属于基础题.2、B【解题分析】
根据二项分布的性质可得:,再根据和二次函数的性质求解.【题目详解】因为随机变量满足,,.所以服从二项分布,由二项分布的性质可得:,因为,所以,由二次函数的性质可得:,在上单调递减,所以.故选:B【题目点拨】本题主要考查二项分布的性质及二次函数的性质的应用,还考查了理解辨析的能力,属于中档题.3、D【解题分析】
根据程序框图判断出的意义,由此求得的值,进而求得的值.【题目详解】由题意可得的取值为成绩大于等于90的人数,的取值为成绩大于等于60且小于90的人数,故,,所以.故选:D【题目点拨】本小题考查利用程序框图计算统计量等基础知识;考查运算求解能力,逻辑推理能力和数学应用意识.4、B【解题分析】
求得复数,结合复数除法运算,求得的值.【题目详解】易知,则.故选:B【题目点拨】本小题主要考查复数及其坐标的对应,考查复数的除法运算,属于基础题.5、C【解题分析】由函数的图象向右平移个单位得到,函数在区间上单调递增,在区间上单调递减,可得时,取得最大值,即,,,当时,解得,故选C.点睛:本题主要考查了三角函数图象的平移变换和性质的灵活运用,属于基础题;据平移变换“左加右减,上加下减”的规律求解出,根据函数在区间上单调递增,在区间上单调递减可得时,取得最大值,求解可得实数的值.6、C【解题分析】
根据“被5除余3且被7除余2的正整数”,可得这些数构成等差数列,然后根据等差数列的前项和公式,可得结果.【题目详解】被5除余3且被7除余2的正整数构成首项为23,公差为的等差数列,记数列则令,解得.故该数列各项之和为.故选:C.【题目点拨】本题考查等差数列的应用,属基础题。7、A【解题分析】试题分析:由题意得,二项展开式的通项为,令,所以的系数是,故选A.考点:二项式定理的应用.8、A【解题分析】
先求,再确定展开式中的有理项,最后求系数之和.【题目详解】解:的展开式中二项式系数和为256故,要求展开式中的有理项,则则二项式展开式中有理项系数之和为:故选:A【题目点拨】考查二项式的二项式系数及展开式中有理项系数的确定,基础题.9、D【解题分析】
先求出椭圆方程,再利用椭圆的定义得到,利用二次函数的性质可求,从而可得的取值范围.【题目详解】由题设有,故,故椭圆,因为点为上的任意一点,故.又,因为,故,所以.故选:D.【题目点拨】本题考查椭圆的几何性质,一般地,如果椭圆的左、右焦点分别是,点为上的任意一点,则有,我们常用这个性质来考虑与焦点三角形有关的问题,本题属于基础题.10、B【解题分析】
根据平行的传递性判断A;根据面面平行的定义判断B;根据线面垂直的判定定理判断C;由三棱锥以三角形为底,则高和底面积都为定值,判断D.【题目详解】在A中,因为分别是中点,所以,故A正确;在B中,由于直线与平面有交点,所以不存在点,使得平面平面,故B错误;在C中,由平面几何得,根据线面垂直的性质得出,结合线面垂直的判定定理得出平面,故C正确;在D中,三棱锥以三角形为底,则高和底面积都为定值,即三棱锥的体积为定值,故D正确;故选:B【题目点拨】本题主要考查了判断面面平行,线面垂直等,属于中档题.11、B【解题分析】
根据约束条件作出可行域,找到使直线的截距取最值得点,相应坐标代入即可求得取值范围.【题目详解】画出可行域,如图所示:由图可知,当直线经过点时,取得最小值-5;经过点时,取得最大值5,故.故选:B【题目点拨】本题考查根据线性规划求范围,属于基础题.12、B【解题分析】
2,0,1,9,10按照任意次序排成一行,得所有不以0开头的排列数共个,其中含有2个10的排列数共个,所以产生的不同的6位数的个数为.故选B.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
分类讨论,时不合题意;时求导,求出函数的单调区间,得到在上的最小值,利用不等式恒成立转化为函数最小值,化简得,构造放缩函数对自变量再研究,可解,【题目详解】令;当时,,不合题意;当时,,令,得或,所以在区间和上单调递减.因为,且在区间上单调递增,所以在处取极小值,即最小值为.若,,则,即.当时,,当时,则.设,则.当时,;当时,,所以在上单调递增;在上单调递减,所以,即,所以的最大值为.故答案为:【题目点拨】本题考查不等式恒成立问题.不等式恒成立问题的求解思路:已知不等式(为实参数)对任意的恒成立,求参数的取值范围.利用导数解决此类问题可以运用分离参数法;如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(,或,)求解.14、-20【解题分析】
根据二项式定理的通项公式,再分情况考虑即可求解.【题目详解】解:展开式中项的系数:二项式由通项公式当时,项的系数是,当时,项的系数是,故的系数为;故答案为:【题目点拨】本题主要考查二项式定理的应用,注意分情况考虑,属于基础题.15、【解题分析】
求出,然后由模的平方转化为向量的平方,利用数量积的运算计算.【题目详解】由题意得,.,.,,.故答案为:.【题目点拨】本题考查求向量的模,掌握数量积的定义与运算律是解题基础.本题关键是用数量积的定义把模的运算转化为数量积的运算.16、【解题分析】
首先判断出中间号码的所有可能取值,由此求得基本事件的总数以及中间数字是的事件数,根据古典概型概率计算公式计算出所求概率.【题目详解】根据“钟型验证码”中间数字最大,然后向两边对称递减,所以中间的数字可能是.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.所以该验证码的中间数字是7的概率为.故答案为:【题目点拨】本小题主要考查古典概型概率计算,考查分类加法计数原理、分类乘法计数原理的应用,考查运算求解能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)x2=4y.(2).【解题分析】试题解析:(Ⅰ)设点P(x0,),由x2=2py(p>0)得,y=,求导y′=,因为直线PQ的斜率为1,所以=1且x0--√2=0,解得p=2,所以抛物线C1的方程为x2=4y.(Ⅱ)因为点P处的切线方程为:y-=(x-x0),即2x0x-2py-x02=0,∴OQ的方程为y=-x根据切线与圆切,得d=r,即,化简得x04=4x02+4p2,由方程组,解得Q(,),所以|PQ|=√1+k2|xP-xQ|=点F(0,)到切线PQ的距离是d=,所以S1==,S2=,而由x04=4x02+4p2知,4p2=x04-4x02>0,得|x0|>2,所以==+1≥2+1,当且仅当时取“=”号,即x02=4+2,此时,p=.所以的最小值为2+1.考点:求抛物线的方程,与抛物线有关的最值问题.18、(1).(2)【解题分析】
(1)先对函数求导,结合极值存在的条件可求t,然后结合导数可研究函数的单调性,进而可求极大值;(2)由已知代入可得,x2+(t﹣2)x﹣tlnx≥0在x>0时恒成立,构造函数g(x)=x2+(t﹣2)x﹣tlnx,结合导数及函数的性质可求.【题目详解】(1),x>0,由题意可得,0,解可得t=﹣4,∴,易得,当x>2,0<x<1时,f′(x)>0,函数单调递增,当1<x<2时,f′(x)<0,函数单调递减,故当x=1时,函数取得极大值f(1)=﹣3;(2)由f(x)=x2+(t﹣2)x﹣tlnx+2≥2在x>0时恒成立可得,x2+(t﹣2)x﹣tlnx≥0在x>0时恒成立,令g(x)=x2+(t﹣2)x﹣tlnx,则,(i)当t≥0时,g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以g(x)min=g(1)=t﹣1≥0,解可得t≥1,(ii)当﹣2<t<0时,g(x)在()上单调递减,在(0,),(1,+∞)上单调递增,此时g(1)=t﹣1<﹣1不合题意,舍去;(iii)当t=﹣2时,g′(x)0,即g(x)在(0,+∞)上单调递增,此时g(1)=﹣3不合题意;(iv)当t<﹣2时,g(x)在(1,)上单调递减,在(0,1),()上单调递增,此时g(1)=t﹣1<﹣3不合题意,综上,t≥1时,f(x)≥2恒成立.【题目点拨】本题主要考查了利用导数求解函数的单调性及极值,利用导数与函数的性质处理不等式的恒成立问题,分类讨论思想,属于中档题.19、(1);(2).【解题分析】
(1)利用正弦定理边化角,再利用余弦定理求解即可.(2)为为的中线,所以再平方后利用向量的数量积公式进行求解,再代入可解得,再代入面积公式求解即可.【题目详解】(1)由,可得,由余弦定理可得,故.(2)因为为的中线,所以,两边同时平方可得,故.因为,所以.所以的面积.【题目点拨】本题主要考查了利用正余弦定理与面积公式求解三角形的问题,同时也考查了向量在解三角形中的运用,属于中档题.20、(1),;(2).【解题分析】
(1)利用极坐标和直角坐标的互化公式,即得解;(2)设点的直角坐标为,则点的直角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 股东合同协议书模板样本
- 福鼎充电桩采购合同范本
- 销售激光折弯机合同范本
- 特许加盟合同的管理协议
- 第三方管理装修合同协议
- 煤炭采购居间合同协议书
- 物业被盗赔偿协议书范本
- 网签购房合同中补充协议
- 防雷装置检测委托协议书
- 狗狗协议领养协议书模板
- 2025年中国二手球鞋行业市场全景分析及前景机遇研判报告
- 2025年天津市中考语文试卷(含标准答案)
- 产品售后成本管理制度
- 对海外公司法务管理制度
- 现代农业技术专业教学标准(高等职业教育专科)2025修订
- GB/T 33523.700-2025产品几何技术规范(GPS)表面结构:区域法第700部分:区域形貌测量仪器的校准、调整和验证
- 质检队伍考试题及答案
- 智能心理辅导系统-洞察阐释
- 运沙船运输合同协议
- 文物保护修复验收技术规范
- 重庆发展投资公司及所属企业招聘笔试题库2025
评论
0/150
提交评论