版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省长治市黎城县柏官庄中学2022-2023学年高一数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.正四棱锥P﹣ABCD的底面积为3,体积为,E为侧棱PC的中点,则PA与BE所成的角为() A. B. C. D.参考答案:B【考点】异面直线及其所成的角. 【分析】过顶点作垂线,交底面正方形对角线交点O,连接OE,我们根据正四棱锥P﹣ABCD的底面积为3,体积为,E为侧棱PC的中点,易求出∠OEB即为PA与BE所成的角,解三角形OEB,即可求出答案. 【解答】解:过顶点作垂线,交底面正方形对角线交点O,连接OE, ∵正四棱锥P﹣ABCD的底面积为3,体积为, ∴PO=,AB=,AC=,PA=,OB= 因为OE与PA在同一平面,是三角形PAC的中位线, 则∠OEB即为PA与BE所成的角 所以OE=, 在Rt△OEB中,tan∠OEB==, 所以∠OEB= 故选B 【点评】本题考查的知识点是异面直线及其所成的角,其中根据已知得到∠OEB即为PA与BE所成的角,将异面直线的夹角问题转化为解三角形问题是解答本题的关键. 2.定义域为R的函数f(x)满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x2﹣x,则当x∈[﹣1,0]时,f(x)的最小值为()A.﹣B.﹣C.0D.参考答案:A考点:二次函数的性质.专题:函数的性质及应用.分析:设x∈[﹣1,0],则x+1∈[0,1],故由已知条件求得f(x)==,再利用二次函数的性质求得函数f(x)的最小值.解答:解:设x∈[﹣1,0],则x+1∈[0,1],故由已知条件可得f(x+1)=(x+1)2﹣(x+1)=x2+x=2f(x),∴f(x)==,故当x=﹣时,函数f(x)取得最小值为﹣,故选:A.点评:本题主要考查求函数的解析式,二次函数的性质应用,属于基础题.3.过点(3,1)作圆(x﹣1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为()A.2x+y﹣3=0B.2x﹣y﹣3=0C.4x﹣y﹣3=0D.4x+y﹣3=0参考答案:A考点:圆的切线方程;直线的一般式方程.
专题:直线与圆.分析:由题意判断出切点(1,1)代入选项排除B、D,推出令一个切点判断切线斜率,得到选项即可.解答:解:因为过点(3,1)作圆(x﹣1)2+y2=1的两条切线,切点分别为A,B,所以圆的一条切线方程为y=1,切点之一为(1,1),显然B、D选项不过(1,1),B、D不满足题意;另一个切点的坐标在(1,﹣1)的右侧,所以切线的斜率为负,选项C不满足,A满足.故选A.点评:本题考查直线与圆的位置关系,圆的切线方程求法,可以直接解答,本题的解答是间接法,值得同学学习.4.三个数a=0.67,b=70.6,c=log0.76的大小关系为(
)A.b<c<a B.b<a<c C.c<a<b D.c<b<a参考答案:C【考点】对数值大小的比较.【专题】转化思想;数学模型法;函数的性质及应用.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵0<a=0.67<0,b=70.6>1,c=log0.76<0,∴c<a<b,故选:C.【点评】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题.5.图中阴影部分所表示的集合是()A.(A∪B)∪(B∪C) B.[?U(A∩C)]∪B C.(A∪C)∩(?UB) D.B∩[?U(A∪C)]参考答案:D【考点】Venn图表达集合的关系及运算.【专题】数形结合;定义法;集合.【分析】根据Venn图确定对应的集合关系即可.【解答】解:由图象可知,对应的元素由属于B但不属于A和C的元素构成,即B∩[?U(A∪C)],故选:D.【点评】本题主要考查集合的基本关系的判断,利用图象确定阴影部分对应的集合是解决本题的关键,比较基础.6.长方体ABCD-A1B1C1D1中,AB=AA1=2,AD=1,E为CC1的中点,则异面直线BC1与A1E所成角的余弦值为(
)A. B. C. D.参考答案:C【分析】建系,再利用计算所成角的余弦值【详解】如图所示,建立空间直角坐标系,则故选C【点睛】异面直线所成角,能建系的一般建系较简单,再利用计算所成角的余弦值.7.函数的最小正周期为,将的图像向左平移个单位长度所得图像关于轴对称,则的一个值是(
)(A)
(B)
(C)
(D)参考答案:D略8.函数的一个单调区间是A.
B.
C.
D.参考答案:A略9.设a>1>b>-1,则下列不等式中恒成立的是
(
)A.
B.
C.a>b2
D.a2>2b参考答案:C10.指数函数y=ax的图象经过点(2,16)则a的值是(
)A. B. C.2 D.4参考答案:D【考点】指数函数的定义、解析式、定义域和值域.【专题】计算题.【分析】设出指数函数,将已知点代入求出待定参数,求出指数函数的解析式即可.【解答】解:设指数函数为y=ax(a>0且a≠1)将(2,16)代入得16=a2解得a=4所以y=4x故选D.【点评】本题考查待定系数法求函数的解析式.若知函数模型求解析式时,常用此法.二、填空题:本大题共7小题,每小题4分,共28分11.用分层抽样的方法从某高中学校学生中抽取一个容量为55的样本参加问卷调查,其中高一年级、高二年级分别抽取10人、25人.若该校高三年级共有学生400人,则该校高一和高二年级的学生总数为
▲
人.参考答案:70012.若实数满足:,则
.参考答案:;
解析:据条件,是关于的方程的两个根,即的两个根,所以;.13.若函数f(x)=ax(0<a≠1)在[﹣1,2]上的最大值为4,最小值为m,则m=. 参考答案:2或【考点】指数函数的图象与性质. 【专题】函数思想;综合法;函数的性质及应用. 【分析】按a>1,0<a<1两种情况进行讨论:借助f(x)的单调性及最大值先求出a值,再求出其最小值即可. 【解答】解:①当a>1时,f(x)在[﹣1,2]上单调递增, 则f(x)的最大值为f(2)=a2=4,解得:a=2, 最小值m=f(﹣1)==; ②当0<a<1时,f(x)在[﹣1,2]上单调递减, 则f(x)的最大值为f(﹣1)==4,解得a=, 此时最小值m=f(2)=a2=, 故答案为:2或. 【点评】本题考查指数函数的单调性及其应用,考查分类讨论思想,对指数函数f(x)=ax(a>0,a≠1),当a>1时f(x)递增;当0<a<1时f(x)递减. 14.已知,求
.参考答案:315.函数的定义域为
.参考答案:[-3,0]题意,解得即.
16.(5分)函数f(x)=|x2﹣1|的单调递减区间为
.参考答案:(﹣∞﹣1)和(0,1)考点: 带绝对值的函数;函数的单调性及单调区间.专题: 计算题.分析: 函数f(x)=|x2﹣1|=,结合图象写出函数的单调减区间.解答: 函数f(x)=|x2﹣1|=,如图所示:故函数f(x)的减区间为(﹣∞﹣1)和(0,1),故答案为(﹣∞﹣1)和(0,1).点评: 本题主要考查带有绝对值的函数的单调性,体现了数形结合的数学思想,属于中档题.17.的值为
▲
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数(其中,)的最小正周期为π,且图象经过点(1)求函数f(x)的解析式:(2)求函数f(x)的单调递增区间.参考答案:(1);(2),.【分析】(1)根据最小正周期可求得;代入点,结合的范围可求得,从而得到函数解析式;(2)令,解出的范围即为所求的单调递增区间.【详解】(1)最小正周期
过点
,,解得:,
的解析式为:(2)由,得:,的单调递增区间为:,【点睛】本题考查根据三角函数性质求解函数解析式、正弦型函数单调区间的求解;关键是能够采用整体对应的方式来利用正弦函数的最值和单调区间求解正弦型函数的解析式和单调区间.19.(本小题满分12分)函数是定义在上的奇函数.(1)求函数的解析式;(2)用单调性定义证明函数在上是增函数.参考答案:(I)∵函数是定义在上的奇函数,……2分故,所以,
………4分所以.
………5分
(II)设,,
………6分则
………8分∵
∴,
………10分∴而
∴
………11分∴在上是增函数.
………12分20.求值(1)log2﹣log3+﹣5;(2)已知2x=3y,且+=1,求x,y.参考答案:【考点】对数的运算性质;有理数指数幂的化简求值.【专题】转化思想;数学模型法;函数的性质及应用.【分析】(1)利用对数的运算法则即可得出;(2)利用指数与对数的运算法则即可得出.【解答】解:(1)原式=log34﹣log3+log38﹣3=﹣3=log39﹣3=﹣1.(2)令2x=3y=k>0,k≠1.则x=log2k,y=log3k,∴,=,且+=1,∴=1,解得k=6.∴x=log26,y=log36.【点评】本题考查了指数与对数的运算法则,考查了推理能力与计算能力,属于中档题.21.如图,现在要在一块半
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国礼仪课件教学课件
- 开学课件模板教学课件
- 灌肠护理课件教学课件
- 2024年农用搬运机械项目资金筹措计划书代可行性研究报告
- 精神病医院药剂科相关
- 3.2.3酸碱中和滴定 课件高二上学期化学人教版(2019)选择性必修1
- DB1304T 480-2024商品煤采样技术规范
- 社团的活动部部门介绍
- 静脉输液治疗在临床中的应用
- 白血病饮食宣教
- 阿里巴巴国际站:2024年珠宝眼镜手表及配饰行业报告
- 2024至2030年全球及中国高速光谱相机行业深度研究报告
- 2024年新冀教版一年级上册数学课件 我上学了 5排座位
- 2024至2030年中国氟化工行业“十四五”分析及发展前景预测研究分析报告
- 2025届新高考语文热点冲刺复习议论文标题
- 人教PEP版(2024新版)三年级上册英语Unit 3 Amazing animals教学设计
- 2024年实验室操作安全基础知识试题与答案
- 通识教育题库附有答案
- 2023年七年级科技制作教案全册
- 走进非遗-山东民间美术智慧树知到答案2024年山东第二医科大学
- 一年级上册校本课程教案
评论
0/150
提交评论