安徽省六安市宏立中学2022年高二数学理上学期期末试题含解析_第1页
安徽省六安市宏立中学2022年高二数学理上学期期末试题含解析_第2页
安徽省六安市宏立中学2022年高二数学理上学期期末试题含解析_第3页
安徽省六安市宏立中学2022年高二数学理上学期期末试题含解析_第4页
安徽省六安市宏立中学2022年高二数学理上学期期末试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省六安市宏立中学2022年高二数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.是成立的(

)A.充分而非必要条件 B.必要而非充分条件C.充要条件 D.既非充分又非必要条件参考答案:B2.下列有关命题的叙述错误的是

()A.若p且q为假命题,则p,q均为假命题B.若是q的必要条件,则p是的充分条件C.命题“≥0”的否定是“<0”D.“x>2”是“”的充分不必要条件参考答案:A3.2位男生和3位女生共5位同学站成一排.若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数为(

A.36

B.42

C.48

D.60

参考答案:C4.某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如下表:

使用智能手机不使用智能手机合计学习成绩优秀4812学习成绩不优秀16218合计201030附表:P(K2≥k0)0.150.100.050.0250.0100.0050.001k02.0722.7063.8415.0246.6357.87910.828经计算,则下列选项正确的是()A.有99.5%的把握认为使用智能手机对学习有影响B.有99.5%的把握认为使用智能手机对学习无影响C.有99.9%的把握认为使用智能手机对学习有影响D.有99.9%的把握认为使用智能手机对学习无影响参考答案:A5.已知函数在时取得极值,则实数的值是()A、 B、 C、 D、参考答案:D略6.已知为椭圆的左、右焦点,P是椭圆上一点,若,则等于(

)A.30°

B.45°

C.60°

D.90°参考答案:D设P为轴上方点其坐标为,,,则,,,故选D.7.f(x)=x2﹣2x,g(x)=ax+2(a>0),若对任意的x1∈[﹣1,2],存在x0∈[﹣1,2],使g(x1)=f(x0),则a的取值范围是()A. B. C.[3,+∞) D.(0,3]参考答案:A【考点】函数的值域;集合的包含关系判断及应用.【分析】先求出两个函数在[﹣1,2]上的值域分别为A、B,再根据对任意的x1∈[﹣1,2],存在x0∈[﹣1,2],使g(x1)=f(x0),集合B是集合A的子集,并列出不等式,解此不等式组即可求得实数a的取值范围,注意条件a>0.【解答】解:设f(x)=x2﹣2x,g(x)=ax+2(a>0),在[﹣1,2]上的值域分别为A、B,由题意可知:A=[﹣1,3],B=[﹣a+2,2a+2]∴∴a≤又∵a>0,∴0<a≤故选:A8.已知抛物线y2=2px(p>0)与双曲线有相同的焦点F,点A是两曲线的交点,且AF⊥x轴,则双曲线的离心率为()A.

B.

C.

D.参考答案:D9.如果,则的最小值为(

)A.

B.

C.

D.参考答案:C

考点:基本不等式的应用.【方法点晴】本题主要考查了基本不等式的应用问题,其中解答中根据题设条件构造基本不等式的条件,利用基本基本不等式是解得的关键,解答中有一定的技巧性,但覆盖知识较少,试题比较基础,属于基础题,着重考查了学生构造思想和转化思想,同时考查了学生分析问题和解答问题的能力.10.某程序的框图如图所示,则运行该程序后输出的的值是(

)A.B.C.D.参考答案:A无二、填空题:本大题共7小题,每小题4分,共28分11.某射手射击所得环数的分布列如下:78910Px0.10.3y已知的期望E=8.9,则y的值为

。参考答案:0.4

略12.已知函数f(x)=﹣kx(e为自然对数的底数)有且只有一个零点,则实数k的取值范围是.参考答案:(0,)【考点】54:根的存在性及根的个数判断.【分析】把函数f(x)=﹣kx有且只有一个零点转化为方程k=有且只有一根,构造函数g(x)=,求出函数的导函数,再求其极值,数形结合得答案.【解答】解:由f(x)=﹣kx=0,得=kx,∵x≠0,∴k=,令g(x)=,则g′(x)=,令g′(x)=0,解得x=1,当x>2或x<0时,g′(x)>0,函数g(x)单调递增,当0<x<2时,g′(x)<0,函数g(x)单调递减.∴当x=2时,函数有极小值,即g(2)=,且当x<0,时,g(x)∈(0,+∞),∵函数f(x)=﹣kx(e为自然对数的底数)有且只有一个零点,结合图象可得,∴0<k<,故答案为:(0,).【点评】本题考查根的存在性及根的个数判断,考查利用导数求函数的极值,熟练掌握函数零点与方程根之间的对应关系是解答的关键,是中档题.13.F1,F2分别为椭圆=1的左、右焦点,A为椭圆上一点,且=(+),=(+),则||+||

.参考答案:6【考点】椭圆的简单性质.【分析】求得椭圆的a=6,运用椭圆的定义可得|AF1|+|AF2|=2a=12,由向量的中点表示形式,可得B为AF1的中点,C为AF2的中点,运用中位线定理和椭圆定义,即可得到所求值.【解答】解:椭圆=1的a=6,由椭圆的定义可得|AF1|+|AF2|=2a=12,=(+),可得B为AF1的中点,=(+),可得C为AF2的中点,由中位线定理可得|OB|=|AF2|,|OC|=|AF1|,即有||+||=(|AF1|+|AF2|)=a=6,故答案为:6.【点评】本题考查椭圆的定义、方程和性质,考查向量的中点表示形式,同时考查中位线定理,运用椭圆的第一定义是解题的关键,属于中档题.14.数列{an}中,a1=1,a2=3,且=2,则此数列的前10项和是________。参考答案:12415.已知函数的图象上存在点P,函数的图象上存在点Q,且点P和点Q关于原点对称,则实数a的取值范围是________.参考答案:【分析】由题可以转化为函数y=a+2lnx(x∈[,e])的图象与函数y=x2+2的图象有交点,即方程a+2lnx=x2+2(x∈[,e])有解,即a=x2+2﹣2lnx(x∈[,e])有解,令f(x)=x2+2﹣2lnx,利用导数法求出函数的值域,可得答案.【详解】函数y=﹣x2﹣2的图象与函数y=x2+2的图象关于原点对称,若函数y=a+2lnx(x∈[,e])的图象上存在点P,函数y=﹣x2﹣2的图象上存在点Q,且P,Q关于原点对称,则函数y=a+2lnx(x∈[,e])的图象与函数y=x2+2的图象有交点,即方程a+2lnx=x2+2(x∈[,e])有解,即a=x2+2﹣2lnx(x∈[,e])有解,令f(x)=x2+2﹣2lnx,则f′(x),当x∈[,1)时,f′(x)<0,当x∈(1,e]时,f′(x)>0,故当x=1时,f(x)取最小值3,由f()4,f(e)=e2,故当x=e时,f(x)取最大值e2,故a∈[3,e2],故答案为【点睛】本题考查的知识点是函数图象的对称性,函数的值域,难度中档.16.已知双曲线右支上有一点A,它关于原点的对称点为B,双曲线的右焦点为F,满足,且,则双曲线的离心率e的值是______.参考答案:【分析】运用三角函数的定义可得,,取左焦点,连接,可得四边形为矩形,由双曲线的定义和矩形的性质,可得,由离心率公式可得结果.【详解】,可得,在中,,,在直角三角形中,,可得,,取左焦点,连接,可得四边形为矩形,,,故答案为.【点睛】本题考查双曲线的离心率的求法以及双曲线的应用,属于中档题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解.17.某公司有60万元资金,计划投资甲、乙两个项目.按要求对甲项目的投资不少于对乙项目投资的倍,且对每个项目的投资不能低于5万元;对甲项目每投资1万元可获得0.4万元的利润,对乙项目每投资1万元可获得0.6万元的利润,如该公司在正确规划后,在这两个项目上共可获得的最大利润为

万元.参考答案:31.2【考点】简单线性规划.【分析】这是一个简单的投资分析,因为对乙项目投资获利较大,故在投资规划要求内(对项目甲的投资不小于对项目乙投资的倍),尽可能多地安排资金投资于乙项目,即对项目甲的投资等于对项目乙投资的倍可获最大利润.这是最优解法.【解答】解:因为对乙项目投资获利较大,故在投资规划要求内(对项目甲的投资不小于对项目乙投资的倍)尽可能多地安排资金投资于乙项目,即对项目甲的投资等于对项目乙投资的倍可获最大利润.这是最优解法.即对甲项目投资24万元,对乙项目投资36万元,可获最大利润31.2万元.故答案为:31.2.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)求证:若x>0,则ln(1+x)>;参考答案:证明

略19.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)参考答案:【考点】导数在最大值、最小值问题中的应用;实际问题中导数的意义.【分析】先设楼房每平方米的平均综合费为f(x)元,根据题意写出综合费f(x)关于x的函数解析式,再利用导数研究此函数的单调性,进而得出它的最小值即可.【解答】解:方法1:导数法设楼房每平方米的平均综合费为f(x)元,则(x≥10,x∈Z+),令f'(x)=0得x=15当x>15时,f'(x)>0;当0<x<15时,f'(x)<0因此当x=15时,f(x)取最小值f(15)=2000;答:为了楼房每平方米的平均综合费最少,该楼房应建为15层.方法2:(本题也可以使用基本不等式求解)设楼房每平方米的平均综合费为f(x)元,则,当且进行,即x=15时取等号.答:为了楼房每平方米的平均综合费最少,该楼房应建为15层.【点评】本小题主要考查应用所学导数的知识、思想和方法解决实际问题的能力,建立函数式、解方程、不等式、最大值等基础知识.20.(本小题满分13分)已知ΔABC的三边方程是AB:,BC:CA:,(1)求∠A的大小.(2)求BC边上的高所在的直线的方程.参考答案:解:由题意知、、……3分(1)由到角公式的tanA=

…………6分∴

………………7分(2)设BC边上的高所在的直线的斜率为,则∵BC边上的高所在的直线与直线BC垂直

即∵

∴点A的坐标为

…………………9分代入点斜式方程得

…………13分21.如果方程的两个实根一个小于?1,另一个大于0,求实数m的取值范围(12分)。参考答案:解:设,则由题意得:

,即,解得。22.20名学生某次数学考试成绩(单位:分)的频率分布直方图如下:(1)求频率分布直方图中a的值并估计数学考试成绩的平均分;(2)从成绩在[50,70)的学生中人选2人,求这2人的成绩都在[60,70)中的概率.参考答案:【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(1)由频率分布直方图的性质能求出a和数学考试成绩的平均分.(2)由频率分布直方图得到成绩在[50,70)的学生人数为5人,其中成绩在[50,60)的学生人数为2人,成绩在[60,70)的学生人数为3人,由此利用等可能事件概率计算公式能求出这2人的成绩都在[60,70)中的概率.【解答】解:(1)由频率分布直方图得:(2a+3a+7a+6a+2a)×10=1,解得a=.数学考试成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论