




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题10概率与统计的综合运用
【命题规律】
概率统计在高考中扮演着很重要的角色,概率统计解答题是新高考卷及多数省市高考数学必考内容,
考查热点为古典概型、相互独立事件的概率、条件概率、超几何分布、二项分布、正态分布、统计图表与
数字特征、回归分析、离散型随机变量的分布列、期望与方差的实际应用等.
回顾近几年的高考试题,可以看出概率统计解答题,大多紧密结合社会实际,以现实生活为背景设置
试题,注重知识的综合应用与实际应用,作为考查实践能力的重要载体,命题者要求考生会收集,整理、
分析数据,能从大量数据中抽取对研究问题有用的信息,建立数学模型,再应用数学原理和数学工具解决
实际问题.
【核心考点目录】
核心考点一:求概率及随机变量的分布列与期望
核心考点二:超几何分布与二项分布
核心考点三:概率与其它知识的交汇问题
核心考点四:期望与方差的实际应用
核心考点五:正态分布
核心考点六:统计图表
核心考点七:回归分析
核心考点八:独立性检验
核心考点九:与体育比赛规则有关的概率问题
核心考点十:决策型问题
核心考点十一:条件概率、全概率公式、贝叶斯公式
【真题回归】
I.(2022•全国•统考高考真题)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,
负方得。分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜
的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.
(1)求甲学校获得冠军的概率;
(2)用X表示乙学校的总得分,求X的分布列与期望.
2.(2022•全国•统考高考真题)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到
如下的样本数据的频率分布直方图:
频率/组距
(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);
(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;
(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该
地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位
于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).
3.(2022•全国•统考高考真题)甲、乙两城之间的长途客车均由4和8两家公司运营,为了解这两家公司长
途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:
准点班次数未准点班次数
A24020
B21030
(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;
(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?
n(ad-bc')2
(a+b)(c+d)(a+c)[b+d)
P(K\.k]0.1000.0500.010
2.7063.8416.635
4.(2022•全国•统考高考真题)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种
树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m?)和材积量(单位:
n?),得到如下数据:
样本号i12345678910总和
根部横截面积七0.040.060.040.080.080.050.050.070.070.060.6
材积量必0.250.400.220.540.510.340.360.460.420.403.9
10H)10
并计算得=0・°38,Z,2=16158,=02474.
i=li=li=l
(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;
(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);
(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m2.已
知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.
Z(玉一河(%-9)____
附:相关系数,”“,4^正。1.377.
5.(2022•北京•统考高考真题)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m
以上(含9.50m)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比
赛成绩,并整理得到如下数据(单位:m):
甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;
乙:9.78,9.56,9.51,9.36,9.32,9.23;
丙:9.85,9.65,9.20,9.16.
假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.
(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;
(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望E(X);
(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)
6.(2022•全国•统考高考真题)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯
分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患
该疾病的人群中随机调查了100人(称为对照组),得到如下数据:
9
(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾
病”.然与普的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为兄
⑴证明:
(ii)利用该调查数据,给出P(A|8),P(A|豆)的估计值,并利用(i)的结果给出R的估计值.
附心…黑谓;…
P(K2>k)0.0500.0100.001
k3.8416.63510.828
【方法技巧与总结】
(-)涉及的概率知识层面
主要考查随机变量的概率分布与数学期望,一定要根据有关概念,判断是等可能事件、互斥事件、相
互独立事件还是独立重复试验,以便选择正确的计算方法,进行概率计算及离散型随机变量的分布列和数
学期望的计算,也要掌握几种常见常考的概率分布模型:离散型有二项分布、超几何分布,连续型有正态
分布.考查运用概率知识解决简单实际问题的能力,
1、离散型随机变量的期望与方差
一般地,若离散型随机变量X的分布列为
XXI12•••Xi•••
PP1P2•••Pi•••Pn
称E(X)=XR+X2P2++匕化,为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均
水平.
称D(X)=£(x,-E(X)y为随机变量x的方差,它刻画了随机变量X与其均值E(X)的偏离程度,其
i=l
算术平方根向方为随机变量x的标准差.
(1)离散型随机变量的分布列的性质
①分.0(,=1,2,,〃):②P[+p?++/?„=1•
(2)均值与方差的性质
若y=«X+6,其中a力为常数,则y也是随机变量,
且E(aX+b)=a£(X)+b;D(aX+b)=a2D(X)
(3)分布列的求法
①与排列、组合有关分布列的求法.由排列、组合、概率知识求出概率,再求出分布列.
②与频率分布直方图有关分布列的求法.可由频率估计概率,再求出分布列.
③与互斥事件有关分布列的求法.弄清互斥事件的关系,利用概率公式求出概率,再列出分布列.
④与独立事件(或独立重复试验)有关分布列的求法.先弄清独立事件的关系,求出各个概率,再列
出分布列.
(4)常见的离散型随机变量的概率分布模型
①二项分布;②超儿何分布.
2、常见的连续型概率分布模型
正态分布.
(二)概率分布与不同知识背景结合考查对实际问题的解决能力
1、与数列结合的实际问题
2、与函数导数结合的实际问题
3、与分段函数求最值、解不等式结合的实际问题
4、与统计结合的实际问题
5、与其他背景结合的实际问题
【核心考点】
核心考点一:求概率及随机变量的分布列与期望
【规律方法】
求离散型随机变量的分布列及期望的一般步骤:
(1)根据题中条件确定随机变量的可能取值;
(2)求出随机变量所有可能取值对应的概率,即可得出分布列;
(3)根据期望的概念,结合分布列,即可得出期望(在计算时,要注意随机变量是否服从特殊的分布,
如超几何分布或二项分布等,可结合其对应的概率计算公式及期望计算公式,简化计算)
【典型例题】
例1.(2022•陕西宝鸡•统考一模)甲、乙两个代表队各有3名选手参加对抗赛.比赛规定:甲队的1,2,3
号选手与乙队的1,2,3号选手按编号顺序各比赛一场,某队连赢3场,则获胜,否则由甲队的1号对乙
队的2号,甲队的2号对乙队的1号加赛两场,胜场多者最后获胜(每场比赛只有胜或负两种结果).已知
甲队的1号对乙队的1,2号选手的胜率分别是0.5,0.6,甲队的2号对乙队的1,2号选手的胜率都是
0.5,甲队的3号对乙队的3号选手的胜率也是0.5,假设每场比赛结果相互独立.
(1)求甲队仅比赛3场获胜的概率;
(2)已知每场比赛胜者可获得200个积分,求甲队队员获得的积分数之和X的分布列及期望.
例2.(2022春.云南昆明.高三云南师大附中校考阶段练习)我校举办“学党史”知识测试活动,每位教师3
次测试机会,规定按顺序测试,一旦测试合格就不必参加以后的测试,否则3次测试都要参加.甲教师3
次测试每次合格的概率组成一个公差为9的等差数列,他第一次测试合格的概率不超过;,且他直到第二次
OZ
Q9
测试才合格的概率为高,乙教师3次测试每次测试合格的概率均为彳,每位教师参加的每次测试是否合格
相互独立.
(1)求甲教师第一次参加测试就合格的概率P;
(2)设甲教师参加测试的次数为"?,乙教师参加测试的次数为〃,求《=,〃+〃的分布列.
例3.(2022春・云南曲靖・高三校联考阶段练习)受新冠肺炎疫情的影响,某商场的销售额受到了不同程度
的冲击,为刺激消费,该商场开展一项促销活动,凡在商场消费金额满300元的顾客可以免费抽奖一次,
抽奖的规则如下:在不透明箱子中装有除颜色外其他都相同的10个小球,其中:红色小球1个,白色小球
3个,黄色小球6个,顾客从箱子中依次不放回地摸出3个球,根据摸出球的颜色情况分别进行兑奖.将顾
客摸出的3个球的颜色分成以下四种情况:A:1个红球2个白球;B:3个白球;C:恰有1个黄球;D:
至少两个黄球,若四种情况按发生的机会从小到大的顺序分别对应一等奖,二等奖,三等奖,不中奖.
(1)写出顾客分别获一、二、三等奖时所对应的概率;
(2)已知顾客摸出的第一个球是白球,求该顾客获得二等奖的概率;
(3)若五名顾客每人抽奖一次,且彼此是否中奖相互独立.记中奖的人数为X,求X的分布列和期望.
核心考点二:超几何分布与二项分布
【规律方法】
超几何分布与二项分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两
个概率模型来解决.
一般地,在含有加件产品的N件产品中,任取〃件,其中恰有X件次品,则事件{X=k}发生的概率
为P(X=k)=仅=0,1,2,,m),其中加=,且倭MMwN",称为超几何分布
C,N
列.
一般地,在〃次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为P,
则p(X=k)=C:p[l-p)"Y,k=0,l,2,,n.此时称随机变量X服从二项分布,记作X~B(〃,p),并称p为
成功概率.此时有EX=叩,DX=利(1-p).
【典型例题】
例4.(2022春・北京•高三北京铁路二中校考阶段练习)2022年2月20日,北京冬奥会在鸟巢落下帷幕,中
国队创历史最佳战绩.北京冬奥会的成功举办推动了我国冰雪运动的普及,让越来越多的青少年爱上了冰
雪运动,某校组织了一次全校冰雪运动知识竞赛,并抽取了100名参赛学生的成绩制作成如下频率分布表:
竞赛得分[50,60](60,70](70,80](80,90](90,100]
频率0.10.10.30.30.2
(1)如果规定竞赛得分在(80,90]为“良好”,竞赛得分在(90,100]为“优秀”,从成绩为“良好”和“优秀”的两
组学生中,使用分层抽样抽取10个学生,问各抽取多少人?
(2)在(1)条件下,再从这10学生中抽取6人进行座谈,求至少有3人竞赛得分都是“优秀”的概率;
(3)以这100名参赛学生中竞赛得分为“优秀”的频率作为全校知识竞赛中得分为“优秀”的学生被抽中的概
率.现从该校学生中随机抽取3人,记竞赛得分为“优秀”的人数为X,求随机变量X的分布列及数学期望.
例5.(2022.浙江.模拟预测)高尔顿板是英国生物统计学家高尔顿设计用来研究随机现象的模型,在一块木
板上钉着若干排相互平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,前面挡有一
块玻璃.将小球从顶端放入,小球下落的过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落
入底部的格子中.如图所示的高尔顿板有7层小木块,小球从通道口落下,第一次与第2层中间的小木块
碰撞,以g的概率向左或向右滚下,依次经过6次与小木块碰撞,最后掉入编号为1,2,…,7的球槽内.
(1)如图进行一次高尔顿板试验,求小球落入6号球槽的概率;
(2)某商场店庆期间利用如图的高尔顿板举行有奖促销活动,顾客只要在商场购物消费每满800元就能得
到一次抽奖机会,如消费400元没有抽奖机会,消费900元有一次抽奖机会,消费1700元有两次抽奖机会
等,一次抽奖小球掉入机号球槽得到的奖金为X(元),其中X=|160-40时.
(i)求一次抽奖的奖金X(元)的分布列及数学期望E(X):
(ii)已知某顾客在商场消费2000元,设他所得的奖金为丫(元),求E(y).
例6.(2022春•四川绵阳•高三绵阳中学校考阶段练习)小区为了加强对“新型冠状病毒'’的防控,确保居民在
小区封闭期间生活不受影响,小区超市采取有力措施保障居民正常生活物资供应.为做好甲类生活物资的
供应,超市对社区居民户每天对甲类生活物资的购买量进行了调查,得到了以下频率分布直方图.
(1)从小区超市某天购买甲类生活物资的居民户中任意选取5户.若抽取的5户中购买量在[3,6](单位:
kg)的户数为2户,从5户中选出3户进行生活情况调查,记3户中需求量在[3,61(单位:kg)的户数为
求4的分布列和期望;
(2)将某户某天购买甲类生活物资的量与平均购买量比较,当超出平均购买量不少于0.5kg时,则该居民
户称为“迫切需求户”,若从小区随机抽取10户,且抽到大户为“迫切需求户”的可能性最大,试求表的值.
核心考点三:概率与其它知识的交汇问题
【规律方法】
在知识交汇处设计试题是高考命题的指导思想之一,概率作为高中数学具有实际应用背景的主要内容,
除与实际应用问题相交汇,还常与排列组合、函数、数列等知识交汇.求解此类问题要充分理解题意.根
据题中已知条件,联系所学知识对已知条件进行转化.这类题型具体来说有两大类:
1、所给问题是以集合、函数、立体几何、数列、向量等知识为载体的概率问题.求解时需要利用相关
知识把所给问题转化为概率模型,然后利用概率知识求解.
2、所给问题是概率问题,求解时有时需要把所求概率转化为关于某一变量的函数,然后利用函数、导
数知识进行求解;或者把问题转化为与概率变量有关的数列递推关系式,再通过构造特殊数列求通项或求
和.
【典型例题】
例7.(2022春・上海长宁•高三上海市延安中学校考期中)投掷一枚均匀的骰子,每次掷得的点数为I或6
时得2分,掷得的点数为2,3,4,5时得1分;独立地重复掷一枚骰子,将每次得分相加的结果作为最终
得分;
(1)设投掷2次骰子,最终得分为X,求随机变量X的分布与期望;
(2)设最终得分为〃的概率为巴,证明:{2-匕"为等比数列,并求数列{2}的通项公式;
例8.(2022春・湖南长沙•高三校联考阶段练习)如图,一只蚂蚁从单位正方体ABC。-ABC。的顶点A出
发,每一步(均为等可能性的)经过一条边到达另一顶点,设该蚂蚁经过"步回到点A的概率P..
(/)分别写出P「P2的值;
(//)设顶点A出发经过〃步到达点C的概率为/,求P“+3%的值;
(/〃)求P”.
例9.(2022春・山东•高三校联考阶段练习)某公司在一种传染病毒的检测试剂品上加大了研发投入,其研
发的检验试剂品a分为两类不同剂型必和火.现对其进行两次检测,第一次检测时两类试剂必和合格的
概率分别为一3和:3,第二次检测时两类试剂区和%合格的概率分别为14和彳2.已知两次检测过程相互独立,
两次检测均合格,试剂品a才算合格.
(1)设经过两次检测后两类试剂%和合格的种类数为X,求X的分布列和数学期望;
(2)若地区排查期间,一户4口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家
庭成员逐一使用试剂品a进行检测,如果有一人检测呈阳性,则检测结束,并确定该家庭为“感染高危户设
该家庭每个成员检测呈阳性的概率均为M0<P<D且相互独立,该家庭至少检测了3个人才确定为“感染高
危户”的概率为了(P),若当P=P<>时,/(P)最大,求P。的值.
核心考点四:期望与方差的实际应用
【规律方法】
数学期望反映的是随机变量取值的平均水平,而方差则是反映随机变量取值在其平均值附近的离散程
度.现代实际生活中,越来越多的决策需要应用数学期望与方差来对事件发生大小的可能性和稳定性进行
评估,通过计算分析可以比较科学地得出各个方案的预期效果及出现偏差的大小,从而决定要选择的最佳
方案.
(1)若我们希望实际的平均水平较理想,则先求随机变量的期望,当E0=E42时,不应认为它
们一定一样好,还需要用△来比较这两个随机变量的方差,确定它们的偏离程度.
(2)若我们希望比较稳定性,应先考虑方差,再考虑均值是否相等或接近.
(3)方差不是越小就越好,而是要根据实际问题的需要来判断.
【典型例题】
例10.(2022春•河南•高三期末)根据疫情防控的需要,某地设立进口冷链食品集中监管专仓,集中开展核
酸检测和预防性消毒工作,为了进一步确定某批进口冷链食品是否感染病毒,在入关检疫时需要对其进行
化验,若结果为阳性,则有该病毒;若结果呈阴性,则没有该病毒.对于份样本,有以下两种检验
方式:一是逐份检验,则需要检验〃次;二是混合检验,将上份样本分别取样混合在一起,若检验结果为
阴性,那么这么份全为阴性,检验一次就够了;如果检验结果为阳性,为了明确这k份究竟哪些为阳性,需
要对它们再次取样逐份检验,则4份检验的次数共为%+1次,若每份样本没有病毒的概率为4(0<p<l),
而且样本之间是否有该病毒是相互独立的.
(1)若取得8份样本,采用逐个检测,发现恰有2个样本检测结果为阳性的概率为/(p),求/(p)的最大
值点Po;
(2)若对取得的8份样本,考虑以下两种检验方案:方案一:采用混合检验;方案二:平均分成两组,每
组4份样本采用混合检验,若检验次数的期望值越小,则方案越“优”.若“方案二”比“方案一”更“优”,求p
的取值范围(精确到0.01).
例11.(2022春•湖北•高三黄冈中学校联考阶段练习)随机变量的概念是俄国数学家切比雪夫在十九世纪中
叶建立和提倡使用的.切比雪夫在数论、概率论、函数逼近论、积分学等方面均有所建树,他证明了如下以他
名字命名的离散型切比雪夫不等式:设X为离散型随机变量,则尸(|X-E(X)|殿)岑0,其中X为任意
大于0的实数.切比雪夫不等式可以使人们在随机变量X的分布未知的情况下,对事件的概率作
出估计.
(1)证明离散型切比雪夫不等式;
(2)应用以上结论,回答下面问题:已知正整数”..5.在一次抽奖游戏中,有"个不透明的箱子依次编号
为1,2,,〃,编号为,(啜j冷的箱子中装有编号为0」,,,.的i+1个大小、质地均相同的小球.主持人邀请〃
IIV
位嘉宾从每个箱子中随机抽取一个球,记从编号为i的箱子中抽取的小球号码为X,,并记x=石丁.对任
意的",是否总能保证p(x京0.1〃)0.01(假设嘉宾和箱子数能任意多)?并证明你的结论.
附:可能用到的公式(数学期望的线性性质):对于离散型随机变量X,X1,X2,,*“满足*=£*;,则有
/=!
E(X)这E(XJ.
例12.(2022・全国•高三专题练习)一台机器设备由A和8两个要件组成,在设备运转过程中,A8发生故
障的概率分别记作尸(A)、P(B),假设A和8相互独立.设X表示一次运转过程中需要维修的要件的数目,
若P(A)=0.1,P⑻=0.2.
(1)求出P(X=0),P(X=l),P(X=2);
(2)依据随机变量X的分布,求E(X)和O(X);
(3)若X1表示A需要维修的数目,X?表示8需要维修的数目,写出X、X1和X?的关系式,并依据期望的
线性性质和方差的性质,求E(X)和£>(X).
核心考点五:正态分布
【规律方法】
解决正态分布问题有三个关键点:(1)对称轴x=〃;(2)标准差s(3)分布区间.利用对称性可求指定范
围内的概率值;由〃,分布区间的特征进行转化,使分布区间转化为3b特殊区间,从而求出所求概率.注
意在标准正态分布下对称轴为x=0.
【典型例题】
例13.(2022春•福建泉州•高三福建省南安国光中学校考阶段练习)某中学在一次考试后,对本年级学生物
理成绩进行分析,随机抽取了300名同学的物理成绩(均在50-100分之间),将抽取的成绩分组为[50,60),
[60,70),[70,80),[80,90),[90,100],得到如图所示的频率分布直方图.
(1)求这300名同学物理平均成绩元与第三四分位数的估计值;(结果精确到1)
(2)已知全年级同学的物理成绩服从正态分布N(〃,〃),其中〃取(1)中的元,经计算,。=11,现从
全年级随机选取一名同学的物理成绩,求该成绩在区间(62,95)的概率(结果精确到0.1);
(3)根据(2)的条件,用频率估计概率,现从全年级随机选取n名同学的物理成绩,若他们的成绩都在(62,95)
的概率不低于1%,求〃的最大值(〃为整数).
附:1g2ao.301,若a2),则P(〃一cr<J<〃+cr)=0.68,尸(〃一2cr<J<〃+2cr)=0.96.
例14.(2022.全国•高三专题练习)已知某高校共有10000名学生,其图书馆阅览室共有994个座位,假设
学生是否去自习是相互独立的,且每个学生在每天的晚自习时间去阅览室自习的概率均为0.1.
(1)将每天的晚自习时间去阅览室自习的学生人数记为X,求X的期望和方差;
(2)18世纪30年代,数学家棣莫弗发现,当”比较大时,二项分布可视为正态分布.此外,如果随机变
量令Z=Y二幺,则Z~N(0,l).当2~%(0,1)时,对于任意实数“,记①(")=尸(Z<a).已
知下表为标准正态分布表(节选),该表用于查询标准正态分布N(0,l)对应的概率值.例如当。=0.16时,
由于0.16=0.1+0.06,则先在表的最左列找到数字0.1(位于第三行),然后在表的最上行找到数字0.06
(位于第八列),则表中位于第三行第八列的数字0.5636便是中(016)的值.
a0.000.010.020.030.040.050.060.070.080.09
0.00.50000.50400.50800.51200.51600.51990.52390.52790.53190.5359
0.10.53980.54380.54780.55170.55570.55960.56360.56750.57140.5753
0.20.57930.58320.58710.59100.59480.59870.60260.60640.61030.6141
0.30.61790.62170.62550.62930.63310.63680.64040.64430.64800.6517
0.40.65540.65910.66280.66640.67000.67360.67720.6808,0.68440.6879
0.50.69150.69500.69850.70190.70540.70880.71230.7157,0.71900.7224
①求在晚自习时间阅览室座位不够用的概率;
②若要使在晚自习时间阅览室座位够用的概率高于0.7,则至少需要添加多少个座位?
例15.(2022•全国•高三专题练习)某收费APP(手机应用程序)自上架以来,凭借简洁的界面设计、方便的
操作方式和实用的强大功能深得用户喜爱.为回馈市场并扩大用户量,该APP在2022年以竞价形式做出优
惠活动,活动规则如下:①每月1到15日,大家可通过官网提交自己的报价(报价低于原价),但在报价
时间截止之前无法得知其他人的报价和当月参与活动的总人数;②当月竞价时间截止后的第二天,系统将
根据当期优惠名额,按出价从高到低的顺序给相应人员分配优惠名额,获得优惠名额的人的最低出价即为
该APP在当月的下载优惠价,出价不低于优惠价的人将获得数额为原价减去优惠价的优惠券,并可在当月
下载该APP时使用.小明拟参加2022年7月份的优惠活动,为了预测最低成交价,他根据网站的公告统计
了今年2到6月参与活动的人数,如下表所示:
时间f(月)23456
参与活动的人数),(万人)0.50.611.41.7
(1)若可用线性回归模型拟合参与活动的人数),(单位:万人)与时间r(单位:月)之间的关系,请用最
小二乘法求y关于t的回归方程9=百+4,并预测今年7月参与活动的人数;
(2)某自媒体对200位拟参加今年7月份活动的人进行了一个抽样调查,得到如表所示的频数表:
报价X(单位:元)[1.2)[2,3)[3,4)[4,5)设,6)%,7]
频数206060302010
①求这200人的报价X(单位:元)的平均值又和方差J(同一区间的报价用该价格区间的中点值代替);
②假设所有参与活动的人的报价X(单位:元)可视为服从正态分布N(〃Q2),且〃与〃可分别由①中所
求的样本平均数又及$2估计,若2022年7月计划发放优惠名额数量为3173,请你合理预测该APP在当月
的下载优惠价,并说明理由.
.哂_55
参考公式及数据:①回归方程»=百+&,3=得--------,a=y-bT;(2)XZ7=90>E^=24'Vh7®1.3;
尸zi
/=!
③若随机变量X服从正态分布N出吟,则P(〃一。<X<〃+b)BO.6827,P(〃-2b<X<〃+2b)a0.9545,
P(〃一3cr<X<〃+3o■卜0.9973.
核心考点六:统计图表
【规律方法】
1、制作频率分布直方图的步骤.
极差
第一步:求极差,决定组数和组距,组距=
第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;
第三步:登记频数,计算频率,列出频率分布表;
第四步:画频率分布直方图.
2、解决频率分布直方图问题时要抓住3个要点.
(1)直方图中各小矩形的面积之和为1;
(2)直方图中纵轴表示慧,故每组样本的频率为组距x禁
组距组距
(3)直方图中每组样本的频数为频率x总体个数.
3、用频率分布直方图估计众数、中位数、平均数的方法.
(1)众数为频率分布直方图中最高矩形底边中点的横坐标;
(2)中位数为平分频率分布直方图面积且垂直于横轴的直线与横轴交点的横坐标;
(3)平均数等于每个小矩形面积与小矩形底边中点横坐标之积的和.
【典型例题】
例16.(2022•云南昆明・昆明一中模拟预测)为了响应教育部门疫情期间“停课不停学”的号召,某校实施网
络授课,为了检验学生上网课的效果,在高三年级进行了一次网络模拟考试,从中抽取了100人的数学成
绩,绘制成频率分布直方图(如下图所示),其中数学成绩落在区间[110,120),[120,130),[130,140J
的频率之比为4:2:1.
(1)根据频率分布直方图求学生成绩在区间[110,120)的频率,并求抽取的这100名同学数学成绩的中位
数
(2)若将频率视为概率,从全校高三年级学生中随机抽取3个人,记抽取的3人成绩在[100,130)内的学
生人数为X,求X的分布列与数学期望.
例17.(2022•贵州贵阳•贵阳六中校考一模)某校组织1000名学生进行科学探索知识竞赛,成绩分成5组:
[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示的频率分布直方图.若图中未知的数据”,
b,c成等差数列,成绩落在区间[60,70)内的人数为400.
(2)估计中位数(精确到0.1)和平均数(同一组中的数据用该组区间的中点值代替);
(3)若用频率估计概率,设从这1000人中抽取的6人,得分在区间[90,100]内的学生人数为X,求X的数
学期望.
例18.(2022・全国•高三专题练习)为丰富学生课外生活,某市组织了高中生钢笔书法比赛,比赛分两个阶
段进行:第一阶段由评委为所有参赛作品评分,并确定优胜者;第二阶段为附加赛,参赛人员由组委会按
规则另行确定.数据统计员对第一阶段的分数进行了统计分析,这些分数X都在[75,100)内,再以5为组距
---,n=15,
150
画分数的频率分布直方图(设“器1时’发现y满足:丫=」19
=16,neN^,5n<X<5(〃+l).
1,1
---k------,n>Io,
1520-n
(1)试确定〃的所有取值,并求心
(2)组委会确定:在第一阶段比赛中低于85分的同学无缘获奖也不能参加附加赛;分数在[95,100)内的同
学评为一等奖;分数在[90,95)内的同学评为二等奖,但通过附加赛有'的概率提升为一等奖;分数在[85,90)
内的同学评为三等奖,但通过附加赛有;的概率提升为二等奖(所有参加附加赛的获奖人员均不降低获奖
等级,且附加赛获奖等级在第一阶段获奖等级基础上,最多升高一级).已知学生A和8均参加了本次比赛,
且学生A在第一阶段获得二等奖.
①求学生B最终获奖等级不低于学生A最终获奖等级的概率;
②已知学生A和B都获奖,记A,B两位同学最终获得一等奖的人数为求J的分布列和数学期望.
核心考点七:回归分析
【规律方法】
线性回归分析的原理、方法和步骤:
(1)利用图表和数字特征可以对数据做简单的分析,但是用回归直线方程可以对数据的未来值进行预
测.在选取数据观察的时候,要注意大量相对稳定的数据比不稳定的数据更有价值,近期的数据比过去久
远的数据更有价值.
(2)判断两组数据是否具有线性相关关系的方法:散点图,相关系数.
(3)相关指数卡与相关系数『在含有一个解释变量的线性回归模型中是等价的量(炉=/),都是用来
判断线性回归模型拟合效果好不好的量.
(4)利用换元法,可以将一元非线性回归转化为线性回归.
【典型例题】
例19.(2022春・河南•高三信阳高中校联考期末)随着电池充电技术的逐渐成熟,以锂电池为动力的新一代
无绳类电动工具以其轻巧便携、工作效率高、环保、可适应多种应用场景下的工作等优势,被广泛使用.在消
费者便携无绳化需求与技术发展的双重驱动下,锂电类无绳电动工具及配套充电器市场有望持续扩大.某
公司为适应市场并增强市场竞争力,逐年增加研发人员,使得整体研发创新能力持续提升,现对2017~2021
年的研发人数作了相关统计,如下图:
2017-2021年公司的研发人数情况(年份代码1~5分别对应2017~2021年)
「研发人数M人)
482
396
298
220
204
o2345年份代码x
(i)根据条形统计图中数据,计算该公司研发人数y与年份代码x的相关系数,并由此判断其相关性的
强弱;
(2)试求出y关于X的线性回归方程,并预测2023年该公司的研发人数.(结果取整数)
2y.-y)
参考数据:E(y-y)=55960,399-37.4.参考公式:相关系数------线性
/=1
回归方程的斜率方=上一------;-,截距g=),_".
;=1
附:
Id[0,0.25][0.30,0.75)[0.75,1]
相关性弱一般强
例20.(2022春・广东•高三校联考阶段练习)红铃虫是棉花的主要害虫之一,能对农作物造成严重伤害,每
只红铃虫的平均产卵数),和平均温度x有关,现收集了以往某地的7组数据,得到下面的散点图及一些统计
量的值.
平均温度x/℃21232527293133
O21232527293133温度
(1)根据散点图判断,y=bx+a^y=ced'(其中e=2.718•为自然对数的底数)哪一个更适宜作为平均
产卵数y关于平均温度x的回归方程类型?(给出判断即可,不必说明理由)并由判断结果及表中数据,求
出y关于x的回归方程,(计算结果精确到0.01)
(2)根据以往统计,该地每年平均温度达到28℃以上时红铃虫会造成严重伤害,需要人工防治,其他情况
均不需要人工防治,假设该地每年平均温度达到28c以上的概率为1.该地今后4年中至少有两年需要人
工防治的概率.
参考数据
777
3其
yZ
»=1»=|»=|
52151771371781.33.6
附:回归方程夕=故+&/=旦F----------=得---------,a=y-bx.
名外-h『fx;-加2
/=1/=1
例21.(2022•全国•模拟预测)住房和城乡建设部等六部门发布通知提出,到2025年,农村生活垃圾无害化
处理水平明显提升.我国生活垃圾主要有填埋、焚烧与堆肥三种处理方式,随着我国垃圾处理结构的不断
优化调整,焚烧处理逐渐成为市场主流.根据国家统计局公布的数据,对2013—2020年全国生活垃圾焚烧
无害化处理厂的个数y(单位:座)进行统计,得到如下表格:
年份20132014201520162017201820192020
年份代码X12345678
生活垃圾焚烧无害化处理厂的个数y166188220249286331389463
(1)由表中数据可知,可用线性回归模型拟合y与x之间的关系,请用相关系数加以说明;(精确到0.01)
(2)求出y关于x的线性回归方程,并预测2022年全国生活垃圾焚烧无害化处理厂的个数;
(3)对于2035年全国生活垃圾焚烧无害化处理厂的个数,还能用所求的线性回归方程预测吗?请简要说
明理由.
讣T(一)
参考公式:相关系数「=亍卢------:---------回归方程§=班+2中斜率和截距的最小二乘估计公式分
加一)5(一)2
£”)(一)
别为万,S=•
8888
参考数据:\>尸2292,Zx;=204,'£=730348,=12041,573。=328329,0^名10.25,
1=1f=l
A/7369»85.84.
核心考点八:独立性检验
【规律方法】
解独立性检验应用问题的注意事项.
(1)两个明确:①明确两类主体;②明确研究的两个问题.
(2)在列联表中注意事件的对应及相关值的确定,不可混淆.
(3)在实际问题中,独立性检验的结论仅是一种数学关系表述,得到的结论有一定的概率出错.
(4)对判断结果进行描述时,注意对象的选取要准确无误,应是对假设结论进行的含概率的判断,而
非其他.
【典型例题】
例22.(2022•河南•模拟预测)为了检测产品质量,某企业从甲、乙两条生产线上分别抽取200件产品作为
样本,检测其质量指标值,质量指标值的范围为[40,100].根据该产品的质量标准,规定质量指标值在
(80,100]内的产品为“优等品”,否则为“非优等品”.抽样统计后得到的数据如下:
质量指标值[40,50](50,60](60,70](70,80](80,90](90,100]
甲生产线生产的产品数量4915327664
乙生产线生产的产品数量6722456753
(1)填写下面的2x2列联表,计算父,并判断能否有99%的把握认为产品是否为“优等品”与生产线有关;
优等品非优等品合计
甲生产线生产的产品数量
乙生产线生产的产品数量
合计
(2)由于样本中来自乙生产线“非优等品'’的个数多于来自甲生产线的,为找出原因,该厂质量控制部门在
抽出的“非优等品''中,按甲、乙生产线采用分层抽样的方法抽出7件产品,然后再从中随机抽出2件产品进
行全面分析,求其中至少有1件是乙生产线生产的产品的概率.
n(ad-bc)~
附:K2=n=a+b+c+d.
(a+t>)(c+d)(a+c)(b+d)
P(K2>k)0.0500.0100.005
k3.8416.6357.879
例23.(2022•重庆江北•校考一模)为了有针对性地提高学生体育锻炼的积极性,某中学需要了解性别因素
是否对学生体育锻炼的经常性有影响,为此随机抽查了男女生各100名,得到如下数据:
锻炼
性别
不经常经常
ZJ
SHJ□
(1)依据a=0.01的独立性检验,能否认为性别因素与学生体育锻炼的经常性有关系;
(2)从这200人中随机选择1人,已知选到的学生经常参加体育锻炼,求他是男生的概率;
(3)为了提高学生体育锻炼的积极性,集团设置了“学习女排精神,塑造健康体魄”的主题活动,在该活动
的某次排球训练课上,甲乙丙三人相互做传球训练,第1次由甲将球传出,每次传球时,传球者都等可能
地将球传给另外两个人中的任何一人.求第〃次传球后球在甲手中的概率.
附:/=_______"(ad-A),______
(n+5)(c+t/)(a+c)(〃+d)
a0.0100.0050.001
Xa6.6357.87910.828
例24.(2022春•四川成都•高三校考阶段练习)为考查某种药物预防疾病的效果,进行动物试验,得到如下
丢失数据的列联表:
患病未患病总计
没服用药203050
服用药Xy50
总计N100
设从没服用药的动物中任取2只,未患病数为鼻从服用药物的动物中任取2只,未患病数为〃,工作人员
曾计算过P(J=0)=1P(/7=0)
(1)求出列联表中数据x,y,M,N的值:
(2)求J与〃的均值(期望)并比较大小,请解释所得结论的实际含义:
(3)能够以99%的把握认为药物有效吗?
(参考公式——机),其中“=a+0+c+d)
[a+b)[c+d)(a+c)(b+d)
P(K2>k)0.100.050.0100.001
k2.7063.8416.63510.828
核心考点九:与体育比赛规则有关的概率问题
【规律方法】
1、在与体育比赛规则有关的问题中,一般都会涉及分组,处理该类问题时主要借助于排列组合.对于
分组问题,要注意平均分组与非平均分组,另外,在算概率时注意“直接法”与“间接法”的灵活运用.
2、与体育比赛有关的问题中最常见的就是输赢问题,经常涉及“多人淘汰制问题”“三局两胜制问
题”“五局三胜制问题”“七局四胜制问题”,解决这些问题的关键是认识“三局两胜制”“五局三胜制”等所进
行的场数,赢了几场与第几场赢,用互斥事件分类,分析事件的独立性,用分步乘法计数原理计算概率,
在分类时要注意“不重不漏”.
3、在体育比赛问题中,比赛何
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乐器维修租赁合同样本
- 产品设备代理合同标准文本
- 2025企业间贸易融资合同
- 仓储管理咨询合同样本
- 书刊印刷合同样本
- 公司做合同范例
- 买车不过户合同样本
- pvc管材料合同标准文本
- 公益岗位招聘合同样本
- 公租房分房合同标准文本
- 2024年四川省眉山市中考地理+生物试卷(含答案)
- 房地产中介服务质量调研报告
- 当代世界经济与政治 李景治 第八版 课件 第1、2章 当代世界政治、当代世界经济
- 2023年复合型胶粘剂项目安全评价报告
- DZ∕T 0215-2020 矿产地质勘查规范 煤(正式版)
- 【初中+语文】中考语文一轮专题复习+《名著阅读+女性的力量》课件
- 城市道路桥梁工程施工质量验收规范 DG-TJ08-2152-2014
- 响应面分析软件DesignExpert使用教程
- 《新病历书写规范》课件
- 2024城镇燃气管道非开挖修复更新工程技术规范
- 肠胃消化健康的知识讲座
评论
0/150
提交评论