枣庄市重点中学2024年数学高三第一学期期末统考试题含解析_第1页
枣庄市重点中学2024年数学高三第一学期期末统考试题含解析_第2页
枣庄市重点中学2024年数学高三第一学期期末统考试题含解析_第3页
枣庄市重点中学2024年数学高三第一学期期末统考试题含解析_第4页
枣庄市重点中学2024年数学高三第一学期期末统考试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

枣庄市重点中学2024年数学高三第一学期期末统考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是()A. B.C. D.2.已知F是双曲线(k为常数)的一个焦点,则点F到双曲线C的一条渐近线的距离为()A.2k B.4k C.4 D.23.已知随机变量的分布列是则()A. B. C. D.4.若x,y满足约束条件且的最大值为,则a的取值范围是()A. B. C. D.5.一个超级斐波那契数列是一列具有以下性质的正整数:从第三项起,每一项都等于前面所有项之和(例如:1,3,4,8,16…).则首项为2,某一项为2020的超级斐波那契数列的个数为()A.3 B.4 C.5 D.66.某三棱锥的三视图如图所示,则该三棱锥的体积为A. B. C.2 D.7.“是函数在区间内单调递增”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件8.己知函数若函数的图象上关于原点对称的点有2对,则实数的取值范围是()A. B. C. D.9.设,则(

)A.10 B.11 C.12 D.1310.已知四棱锥,底面ABCD是边长为1的正方形,,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为()A. B. C. D.111.已知命题p:“”是“”的充要条件;,,则()A.为真命题 B.为真命题C.为真命题 D.为假命题12.已知正方体的体积为,点,分别在棱,上,满足最小,则四面体的体积为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点是抛物线上动点,是抛物线的焦点,点的坐标为,则的最小值为______________.14.曲线在点处的切线方程是__________.15.已知抛物线的焦点为,直线与抛物线相切于点,是上一点(不与重合),若以线段为直径的圆恰好经过,则点到抛物线顶点的距离的最小值是__________.16.等边的边长为2,则在方向上的投影为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在数列中,,(1)求数列的通项公式;(2)若存在,使得成立,求实数的最小值18.(12分)已知直线的参数方程为(,为参数),曲线的极坐标方程为.(1)将曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;(2)若直线经过点,求直线被曲线截得的线段的长.19.(12分)己知,,.(1)求证:;(2)若,求证:.20.(12分)在平面直角坐标系中,已知椭圆的左顶点为,右焦点为,为椭圆上两点,圆.(1)若轴,且满足直线与圆相切,求圆的方程;(2)若圆的半径为,点满足,求直线被圆截得弦长的最大值.21.(12分)已知函数的图象在处的切线方程是.(1)求的值;(2)若函数,讨论的单调性与极值;(3)证明:.22.(10分)如图,在正四棱柱中,,,过顶点,的平面与棱,分别交于,两点(不在棱的端点处).(1)求证:四边形是平行四边形;(2)求证:与不垂直;(3)若平面与棱所在直线交于点,当四边形为菱形时,求长.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】根据四个列联表中的等高条形图可知,图中D中共享与不共享的企业经济活跃度的差异最大,它最能体现共享经济对该部门的发展有显著效果,故选D.2、D【解题分析】

分析可得,再去绝对值化简成标准形式,进而根据双曲线的性质求解即可.【题目详解】当时,等式不是双曲线的方程;当时,,可化为,可得虚半轴长,所以点F到双曲线C的一条渐近线的距离为2.故选:D【题目点拨】本题考查双曲线的方程与点到直线的距离.属于基础题.3、C【解题分析】

利用分布列求出,求出期望,再利用期望的性质可求得结果.【题目详解】由分布列的性质可得,得,所以,,因此,.故选:C.【题目点拨】本题考查离散型随机变量的分布列以及期望的求法,是基本知识的考查.4、A【解题分析】

画出约束条件的可行域,利用目标函数的最值,判断a的范围即可.【题目详解】作出约束条件表示的可行域,如图所示.因为的最大值为,所以在点处取得最大值,则,即.故选:A【题目点拨】本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.5、A【解题分析】

根据定义,表示出数列的通项并等于2020.结合的正整数性质即可确定解的个数.【题目详解】由题意可知首项为2,设第二项为,则第三项为,第四项为,第五项为第n项为且,则,因为,当的值可以为;即有3个这种超级斐波那契数列,故选:A.【题目点拨】本题考查了数列新定义的应用,注意自变量的取值范围,对题意理解要准确,属于中档题.6、A【解题分析】由给定的三视图可知,该几何体表示一个底面为一个直角三角形,且两直角边分别为和,所以底面面积为高为的三棱锥,所以三棱锥的体积为,故选A.7、C【解题分析】,令解得当,的图像如下图当,的图像如下图由上两图可知,是充要条件【考点定位】考查充分条件和必要条件的概念,以及函数图像的画法.8、B【解题分析】

考虑当时,有两个不同的实数解,令,则有两个不同的零点,利用导数和零点存在定理可得实数的取值范围.【题目详解】因为的图象上关于原点对称的点有2对,所以时,有两个不同的实数解.令,则在有两个不同的零点.又,当时,,故在上为增函数,在上至多一个零点,舍.当时,若,则,在上为增函数;若,则,在上为减函数;故,因为有两个不同的零点,所以,解得.又当时,且,故在上存在一个零点.又,其中.令,则,当时,,故为减函数,所以即.因为,所以在上也存在一个零点.综上,当时,有两个不同的零点.故选:B.【题目点拨】本题考查函数的零点,一般地,较为复杂的函数的零点,必须先利用导数研究函数的单调性,再结合零点存在定理说明零点的存在性,本题属于难题.9、B【解题分析】

根据题中给出的分段函数,只要将问题转化为求x≥10内的函数值,代入即可求出其值.【题目详解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故选:B.【题目点拨】本题主要考查了分段函数中求函数的值,属于基础题.10、B【解题分析】

过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.设,将表示成关于的函数,再求函数的最值,即可得答案.【题目详解】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面平面ABCD,所以平面ABCD,所以.因为底面ABCD是边长为1的正方形,,所以.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.易证平面平面ABE,所以点H到平面ABE的距离,即为H到EF的距离.不妨设,则,.因为,所以,所以,当时,等号成立.此时EH与ED重合,所以,.故选:B.【题目点拨】本题考查空间中点到面的距离的最值,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力,求解时注意辅助线及面面垂直的应用.11、B【解题分析】

由的单调性,可判断p是真命题;分类讨论打开绝对值,可得q是假命题,依次分析即得解【题目详解】由函数是R上的增函数,知命题p是真命题.对于命题q,当,即时,;当,即时,,由,得,无解,因此命题q是假命题.所以为假命题,A错误;为真命题,B正确;为假命题,C错误;为真命题,D错误.故选:B【题目点拨】本题考查了命题的逻辑连接词,考查了学生逻辑推理,分类讨论,数学运算的能力,属于中档题.12、D【解题分析】

由题意画出图形,将所在的面延它们的交线展开到与所在的面共面,可得当时最小,设正方体的棱长为,得,进一步求出四面体的体积即可.【题目详解】解:如图,

∵点M,N分别在棱上,要最小,将所在的面延它们的交线展开到与所在的面共面,三线共线时,最小,

设正方体的棱长为,则,∴.

取,连接,则共面,在中,设到的距离为,

设到平面的距离为,

.

故选D.【题目点拨】本题考查多面体体积的求法,考查了多面体表面上的最短距离问题,考查计算能力,是中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角.故当和抛物线相切时,的值最小.再利用直线的斜率公式、导数的几何意义求得切点的坐标,从而求得的最小值.【题目详解】解:由题意可得,抛物线的焦点,准线方程为,过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角.故当最小时,的值最小.设切点,由的导数为,则的斜率为,求得,可得,,,.故答案为:.【题目点拨】本题考查抛物线的定义,性质的简单应用,直线的斜率公式,导数的几何意义,属于中档题.14、【解题分析】

利用导数的几何意义计算即可.【题目详解】由已知,,所以,又,所以切线方程为,即.故答案为:【题目点拨】本题考查导数的几何意义,考查学生的基本计算能力,要注意在某点处的切线与过某点的切线的区别,是一道容易题.15、【解题分析】

根据抛物线,不妨设,取,通过求导得,,再根据以线段为直径的圆恰好经过,则,得到,两式联立,求得点N的轨迹,再求解最值.【题目详解】因为抛物线,不妨设,取,所以,即,所以,因为以线段为直径的圆恰好经过,所以,所以,所以,由,解得,所以点在直线上,所以当时,最小,最小值为.故答案为:2【题目点拨】本题主要考查直线与抛物线的位置关系直线的交轨问题,还考查了运算求解的能力,属于中档题.16、【解题分析】

建立直角坐标系,结合向量的坐标运算求解在方向上的投影即可.【题目详解】建立如图所示的平面直角坐标系,由题意可知:,,,则:,,且,,据此可知在方向上的投影为.【题目点拨】本题主要考查平面向量数量积的坐标运算,向量投影的定义与计算等知识,意在考查学生的转化能力和计算求解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】

(1)由得,两式相减可得是从第二项开始的等比数列,由此即可求出答案;(2),分类讨论,当时,,作商法可得数列为递增数列,由此可得答案,【题目详解】解:(1)因为,,两式相减得:,即,是从第二项开始的等比数列,∵∴,则,;(2),当时,;当时,设递增,,所以实数的最小值.【题目点拨】本题主要考查地推数列的应用,属于中档题.18、(1)曲线表示的是焦点为,准线为的抛物线;(2)8.【解题分析】试题分析:(1)将曲线的极坐标方程为两边同时乘以,利用极坐标与直角坐标之间的关系即可得出其直角坐标方程;(2)由直线经过点,可得的值,再将直线的参数方程代入曲线的标准方程,由直线参数方程的几何意义可得直线被曲线截得的线段的长.试题解析:(1)由可得,即,∴曲线表示的是焦点为,准线为的抛物线.(2)将代入,得,∴,∵,∴,∴直线的参数方程为(为参数).将直线的参数方程代入得,由直线参数方程的几何意义可知,.19、(1)证明见解析(2)证明见解析【解题分析】

(1)采用分析法论证,要证,分式化整式为,再利用立方和公式转化为,再作差提取公因式论证.(2)由基本不等式得,再用不等式的基本性质论证.【题目详解】(1)要证,即证,即证,即证,即证,即证,该式显然成立,当且仅当时等号成立,故.(2)由基本不等式得,,当且仅当时等号成立.将上面四式相加,可得,即.【题目点拨】本题考查证明不等式的方法、基本不等式,还考查推理论证能力以及化归与转化思想,属于中档题..20、(1)(2)【解题分析】试题分析:(1)确定圆的方程,就是确定半径的值,因为直线与圆相切,所以先确定直线方程,即确定点坐标:因为轴,所以,根据对称性,可取,则直线的方程为,根据圆心到切线距离等于半径得(2)根据垂径定理,求直线被圆截得弦长的最大值,就是求圆心到直线的距离的最小值.设直线的方程为,则圆心到直线的距离,利用得,化简得,利用直线方程与椭圆方程联立方程组并结合韦达定理得,因此,当时,取最小值,取最大值为.试题解析:解:(1)因为椭圆的方程为,所以,.因为轴,所以,而直线与圆相切,根据对称性,可取,则直线的方程为,即.由圆与直线相切,得,所以圆的方程为.(2)易知,圆的方程为.①当轴时,,所以,此时得直线被圆截得的弦长为.②当与轴不垂直时,设直线的方程为,,首先由,得,即,所以(*).联立,消去,得,将代入(*)式,得.由于圆心到直线的距离为,所以直线被圆截得的弦长为,故当时,有最大值为.综上,因为,所以直线被圆截得的弦长的最大值为.考点:直线与圆位置关系21、(1);(2)单调递减区间为,单调递增区间为,的极小值为,无极大值;(3)见解析.【解题分析】

(1)切点既在切线上又在曲线上得一方程,再根据斜率等于该点的导数再列一方程,解方程组即可;(2)先对求导数,根据导数判断和求解即可.(3)把证明转化为证明,然后证明极小值大于极大值即可.【题目详解】解:(1)函数的定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论