云南省盐津县第三中学2024年数学高三上期末质量跟踪监视模拟试题含解析_第1页
云南省盐津县第三中学2024年数学高三上期末质量跟踪监视模拟试题含解析_第2页
云南省盐津县第三中学2024年数学高三上期末质量跟踪监视模拟试题含解析_第3页
云南省盐津县第三中学2024年数学高三上期末质量跟踪监视模拟试题含解析_第4页
云南省盐津县第三中学2024年数学高三上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省盐津县第三中学2024年数学高三上期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线,F为抛物线的焦点且MN为过焦点的弦,若,,则的面积为()A. B. C. D.2.已知集合,,则等于()A. B. C. D.3.若实数x,y满足条件,目标函数,则z的最大值为()A. B.1 C.2 D.04.已知m,n是两条不同的直线,,是两个不同的平面,给出四个命题:①若,,,则;②若,,则;③若,,,则;④若,,,则其中正确的是()A.①② B.③④ C.①④ D.②④5.若复数,,其中是虚数单位,则的最大值为()A. B. C. D.6.若点x,y位于由曲线x=y-2+1与x=3围成的封闭区域内(包括边界),则A.-3,1 B.-3,5 C.-∞,-37.已知命题,;命题若,则,下列命题为真命题的是()A. B. C. D.8.已知数列的前项和为,且,,则()A. B. C. D.9.已知为虚数单位,若复数,则A. B.C. D.10.抛物线的焦点为F,点为该抛物线上的动点,若点,则的最小值为()A. B. C. D.11.已知,,分别是三个内角,,的对边,,则()A. B. C. D.12.设等比数列的前项和为,若,则的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在平面四边形ABCD中,|AC|=3,|BD|=4,则(AB14.设为正实数,若则的取值范围是__________.15.在三棱锥P-ABC中,,,,三个侧面与底面所成的角均为,三棱锥的内切球的表面积为_________.16.已知集合,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)解不等式;(2)若函数最小值为,且,求的最小值.18.(12分)新高考,取消文理科,实行“”,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在称为中青年,年龄在称为中老年),并把调查结果制成下表:年龄(岁)频数515101055了解4126521(1)分别估计中青年和中老年对新高考了解的概率;(2)请根据上表完成下面列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?了解新高考不了解新高考总计中青年中老年总计附:.0.0500.0100.0013.8416.63510.828(3)若从年龄在的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为,求的分布列以及.19.(12分)已知在中,角,,的对边分别为,,,的面积为.(1)求证:;(2)若,求的值.20.(12分)在四棱锥中,是等边三角形,点在棱上,平面平面.(1)求证:平面平面;(2)若,求直线与平面所成角的正弦值的最大值;(3)设直线与平面相交于点,若,求的值.21.(12分)已知函数,.(1)证明:函数的极小值点为1;(2)若函数在有两个零点,证明:.22.(10分)已知函数.(1)若恒成立,求的取值范围;(2)设函数的极值点为,当变化时,点构成曲线,证明:过原点的任意直线与曲线有且仅有一个公共点.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

根据可知,再利用抛物线的焦半径公式以及三角形面积公式求解即可.【题目详解】由题意可知抛物线方程为,设点点,则由抛物线定义知,,则.由得,则.又MN为过焦点的弦,所以,则,所以.故选:A【题目点拨】本题考查抛物线的方程应用,同时也考查了焦半径公式等.属于中档题.2、B【解题分析】

解不等式确定集合,然后由补集、并集定义求解.【题目详解】由题意或,∴,.故选:B.【题目点拨】本题考查集合的综合运算,以及一元二次不等式的解法,属于基础题型.3、C【解题分析】

画出可行域和目标函数,根据平移得到最大值.【题目详解】若实数x,y满足条件,目标函数如图:当时函数取最大值为故答案选C【题目点拨】求线性目标函数的最值:当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.4、D【解题分析】

根据面面垂直的判定定理可判断①;根据空间面面平行的判定定理可判断②;根据线面平行的判定定理可判断③;根据面面垂直的判定定理可判断④.【题目详解】对于①,若,,,,两平面相交,但不一定垂直,故①错误;对于②,若,,则,故②正确;对于③,若,,,当,则与不平行,故③错误;对于④,若,,,则,故④正确;故选:D【题目点拨】本题考查了线面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,属于基础题.5、C【解题分析】

由复数的几何意义可得表示复数,对应的两点间的距离,由两点间距离公式即可求解.【题目详解】由复数的几何意义可得,复数对应的点为,复数对应的点为,所以,其中,故选C【题目点拨】本题主要考查复数的几何意义,由复数的几何意义,将转化为两复数所对应点的距离求值即可,属于基础题型.6、D【解题分析】

画出曲线x=y-2+1与x=3围成的封闭区域,y+1x-2表示封闭区域内的点(x,y)【题目详解】画出曲线x=y-2+1与y+1x-2表示封闭区域内的点(x,y)和定点P(2,-1)设k=y+1x-2,结合图形可得k≥k由题意得点A,B的坐标分别为A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范围为-∞,-3故选D.【题目点拨】解答本题的关键有两个:一是根据数形结合的方法求解问题,即把y+1x-27、B【解题分析】解:命题p:∀x>0,ln(x+1)>0,则命题p为真命题,则¬p为假命题;取a=﹣1,b=﹣2,a>b,但a2<b2,则命题q是假命题,则¬q是真命题.∴p∧q是假命题,p∧¬q是真命题,¬p∧q是假命题,¬p∧¬q是假命题.故选B.8、C【解题分析】

根据已知条件判断出数列是等比数列,求得其通项公式,由此求得.【题目详解】由于,所以数列是等比数列,其首项为,第二项为,所以公比为.所以,所以.故选:C【题目点拨】本小题主要考查等比数列的证明,考查等比数列通项公式,属于基础题.9、B【解题分析】

因为,所以,故选B.10、B【解题分析】

通过抛物线的定义,转化,要使有最小值,只需最大即可,作出切线方程即可求出比值的最小值.【题目详解】解:由题意可知,抛物线的准线方程为,,过作垂直直线于,由抛物线的定义可知,连结,当是抛物线的切线时,有最小值,则最大,即最大,就是直线的斜率最大,设在的方程为:,所以,解得:,所以,解得,所以,.故选:.【题目点拨】本题考查抛物线的基本性质,直线与抛物线的位置关系,转化思想的应用,属于基础题.11、C【解题分析】

原式由正弦定理化简得,由于,可求的值.【题目详解】解:由及正弦定理得.因为,所以代入上式化简得.由于,所以.又,故.故选:C.【题目点拨】本题主要考查正弦定理解三角形,三角函数恒等变换等基础知识;考查运算求解能力,推理论证能力,属于中档题.12、C【解题分析】

求得等比数列的公比,然后利用等比数列的求和公式可求得的值.【题目详解】设等比数列的公比为,,,,因此,.故选:C.【题目点拨】本题考查等比数列求和公式的应用,解答的关键就是求出等比数列的公比,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、-7【解题分析】

由题意得AB+【题目详解】由题意得ABBC+∴AB+【题目点拨】突破本题的关键是抓住题中所给图形的特点,利用平面向量基本定理和向量的加减运算,将所给向量统一用AC,14、【解题分析】

根据,可得,进而,有,而,令,得到,再用导数法求解,【题目详解】因为,所以,所以,所以,所以,令,,所以,当时,,当时,所以当时,取得最大值,又,所以取值范围是,故答案为:【题目点拨】本题主要考查基本不等式的应用和导数法求最值,还考查了运算求解的能力,属于难题,15、【解题分析】

先确定顶点在底面的射影,再求出三棱锥的高以及各侧面三角形的高,利用各个面的面积和乘以内切球半径等于三棱锥的体积的三倍即可解决.【题目详解】设顶点在底面上的射影为H,H是三角形ABC的内心,内切圆半径.三个侧面与底面所成的角均为,,,的高,,设内切球的半径为R,∴,内切球表面积.故答案为:.【题目点拨】本题考查三棱锥内切球的表面积问题,考查学生空间想象能力,本题解题关键是找到内切球的半径,是一道中档题.16、【解题分析】

解一元二次不等式化简集合,再进行集合的交运算,即可得到答案.【题目详解】,,.故答案为:.【题目点拨】本题考查一元二次不等式的求解、集合的交运算,考查运算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)利用零点分段法,求得不等式的解集.(2)先求得,即,再根据“的代换”的方法,结合基本不等式,求得的最小值.【题目详解】(1)当时,,即,无解;当时,,即,得;当时,,即,得.故所求不等式的解集为.(2)因为,所以,则,.当且仅当即时取等号.故的最小值为.【题目点拨】本小题主要考查零点分段法解绝对值不等式,考查利用基本不等式求最值,考查化归与转化的数学思想方法,属于中档题.18、(1);(2)见解析,有95%的把握判断了解新高考与年龄(中青年、中老年)有关联;(3)分布列见解析,.【解题分析】

(1)分别求出中青年、中老年对高考了解的频数,即可求出概率;(2)根据数据列出列联表,求出的观测值,对照表格,即可得出结论;(3)年龄在的被调查者共5人,其中了解新高考的有2人,可能取值为0,1,2,分别求出概率,列出随机变量分布列,根据期望公式即可求解.【题目详解】(1)由题中数据可知,中青年对新高考了解的概率,中老年对新高考了解的概率.(2)列联表如图所示了解新高考不了解新高考总计中青年22830老年81220总计302050,所以有95%的把握判断了解新高考与年龄(中青年、中老年)有关联.(3)年龄在的被调查者共5人,其中了解新高考的有2人,则抽取的3人中了解新高考的人数可能取值为0,1,2,则;;.所以的分布列为012.【题目点拨】本题考查概率、独立性检验及随机变量分布列和期望,考查计算求解能力,属于基础题.19、(1)证明见解析;(2).【解题分析】

(1)利用,利用正弦定理,化简即可证明(2)利用(1),得到当时,,得出,得出,然后可得【题目详解】证明:(1)据题意,得,∴,∴.又∵,∴,∴.解:(2)由(1)求解知,.∴当时,.又,∴,∴,∴.【题目点拨】本题考查正弦与余弦定理的应用,属于基础题20、(1)证明见解析(2)(3)【解题分析】

(1)取中点为,连接,由等边三角形性质可得,再由面面垂直的性质可得,根据平行直线的性质可得,进而求证;(2)以为原点,过作的平行线,分别以,,分别为轴,轴,轴建立空间直角坐标系,设,由点在棱上,可设,即可得到,再求得平面的法向量,进而利用数量积求解;(3)设,,则,求得,,即可求得点的坐标,再由与平面的法向量垂直,进而求解.【题目详解】(1)证明:取中点为,连接,因为是等边三角形,所以,因为且相交于,所以平面,所以,因为,所以,因为,在平面内,所以,所以.(2)以为原点,过作的平行线,分别以,,分别为轴,轴,轴建立空间直角坐标系,设,则,,,,因为在棱上,可设,所以,设平面的法向量为,因为,所以,即,令,可得,即,设直线与平面所成角为,所以,可知当时,取最大值.(3)设,则有,得,设,那么,所以,所以.因为,,所以.又因为,所以,,设平面的法向量为,则,即,,可得,即因为在平面内,所以,所以,所以,即,所以或者(舍),即.【题目点拨】本题考查面面垂直的证明,考查空间向量法求线面成角,考查运算能力与空间想象能力.21、(1)见解析(2)见解析【解题分析】

(1)利用导函数的正负确定函数的增减.(2)函数在有两个零点,即方程在区间有两解,令通过二次求导确定函数单调性证明参数范围.【题目详解】解:(1)证明:因为,当时,,,所以在区间递减;当时,,所以,所以在区间递增;且,所以函数的极小值点为1(2)函数在有两个零点,即方程在区间有两解,令,则令,则,所以在单调递增,又,故存在唯一的,使得,即,所以在单调递减,在区间单调递增,且,又因为,所以,方程关于的方程在有两个零点,由的图象可知,,即.【题目点拨】本题考查利用导数研究函数单调性,确定函数的极值,利用二次求导,零点存在性定理确定参数范围,属于难题.22、(1);(2)证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论