版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省景德镇市第十五中学2021年高二数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如果点P在平面区域上,点Q在曲线x2+(y+2)2=1上,那么|PQ|的最大值为().A.5
B.
C.2+1
D.-1参考答案:A2.设点P为公共焦点F1(﹣2,0),F2(2,0)的椭圆和双曲线的一个交点,且cos∠F1PF2=,已知椭圆的长轴长是双曲线实轴长的4倍,则双曲线的离心率为()A. B.2 C. D.参考答案:B【考点】双曲线的简单性质.【分析】设椭圆半长轴与双曲线的半实轴分别为a1,a2,半焦距为c.设|PF1|=m,|PF2|=n,不妨设m>n,由椭圆与双曲线的定义可得:m+n=2a1,m﹣n=2a2.又4c2=m2+n2﹣2mncos∠F1PF2,cos∠F1PF2=,即可得出双曲线的离心率.【解答】解:设椭圆与双曲线的半长轴分别为a1,a2,半焦距为c,e2=.设|PF1|=m,|PF2|=n,不妨设m>n,则m+n=2a1,m﹣n=2a2.∴m2+n2=2a12+2a22,mn=a12﹣a22,由余弦定理可得4c2=m2+n2﹣2mncos∠F1PF2,∴4c2=2a12+2a22﹣2(a12﹣a22)×.化为:5c2=a12+4a22,由题意可得a1=4a2,即有5c2=16a22+4a22,即为c2=4a22,可得双曲线的离心率为e2==2.故选:B.3.给出命题:已知、为实数,若,则.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是(
)A.3 B.2 C.1 D.0参考答案:C4.设,则下列不等式中一定成立的是
(
)A
B
C
D参考答案:A略5.若直线与圆C:相交,则点的位置是(
)A.在圆C外
B.在圆C内
C.在圆C上
D.以上都可能参考答案:A略6.设f(x)为奇函数,且当x≥0时,f(x)=,则当x<0时,f(x)=A. B.C. D.参考答案:D【分析】先把x<0,转化为-x>0,代入可得,结合奇偶性可得.【详解】是奇函数,时,.当时,,,得.故选D.【点睛】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养.采取代换法,利用转化与化归的思想解题.7.设,则
(
)A.
B.
C.
D.参考答案:B略8.执行下面的程序框图,如果输入的N是6,那么输出的p是()A.120
B.720C.1440
D.5040参考答案:B9.如图:在平行六面体ABCD﹣A1B1C1D1中,M为A1C1与B1D1的交点.若=,=,=,则下列向量中与相等的向量是() A.﹣++ B.++ C.﹣﹣+ D.﹣+参考答案:A【考点】空间向量的加减法. 【专题】空间向量及应用. 【分析】利用空间向量的加法的三角形法则,结合平行六面体的性质分析解答. 【解答】解:由题意,= ===; 故选A. 【点评】本题考查了空间向量的加法,满足三角形法则;比较基础. 10.在等比数列{}中,若前10项的和,若前20项的和,则前30项的和
(
)A.60
B.70
C.80
D.90参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.用秦九韶算法求多项式f(x)=x6﹣5x5+6x4﹣3x3+1.8x2+0.35x+2,在x=﹣1的值时,v2的值是.参考答案:12【考点】秦九韶算法.【分析】首先把一个n次多项式f(x)写成(…((a[n]x+a[n﹣1])x+a[n﹣2])x+…+a[1])x+a[0]的形式,然后化简,求n次多项式f(x)的值就转化为求n个一次多项式的值,求出V3的值.【解答】解:∵f(x)=x6﹣5x5+6x4﹣3x3+1.8x2+0.35x+2=((x﹣5)x+6)x﹣3)x+1.8)x+0.35)x+2,∴v0=a6=1,v1=v0x+a5=1×(﹣1)﹣5=﹣6,v2=v1x+a4=﹣6×(﹣1)+6=12,∴v2的值为12,故答案为12.【点评】本题考查排序问题与算法的多样性,通过数学上的算法,写成程序,然后求解,属于中档题.12.命题“”的否定是
.参考答案:13.若点P在曲线上移动,设点P处的切线的倾斜角为,则的取值范围是_____________参考答案:14.在中,角的对边分别为,已知,且,则的面积为
.参考答案:15.在△ABC中,已知,则b=.参考答案:考点:正弦定理专题:解三角形.分析:利用正弦定理列出关系式,将sinA,sinB及a的值代入计算即可求出b的值.解答:解:∵sinA=,sinB=,a=6,∴由正弦定理=得:b===5.故答案为:5点评:此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.16.已知命题与命题都是真命题,则实数的取值范围是
.参考答案:17.在△中,c=5,△的内切圆的面积是
。参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在直角坐标系中,定义P(x1,y1),Q(x2,y2)之间的“直角距离”:d(P,Q)=|x1﹣x2|+|y1﹣y2|.若点A(﹣2,4),M(x,y)为直线x﹣y+8=0上的动点(Ⅰ)解关于x的不等式d(A,M)≤4;(Ⅱ)求d(A,M)的最小值.参考答案:【考点】7E:其他不等式的解法;IS:两点间距离公式的应用.【分析】(Ⅰ)根据新定义建立关系,利用绝对值不等式的性质,去绝对值求解即可;(Ⅱ)利用绝对值不等式的性质,求解d(A,M)的最小值.【解答】解:(Ⅰ)由题意知d(P,Q)=|x1﹣x2|+|y1﹣y2|.∴d(A,M)≤4;即d(A,M)=|x+2|+|y﹣4|≤4,∵M(x,y)为直线x﹣y+8=0上的动点,∴x+8=y.∴d(A,M)=|x+2|+|x+4|≤4去掉绝对值:或或解得:﹣5≤x≤﹣4或﹣4<x<﹣2或﹣2≤x≤﹣1,∴不等式的解集为{x|﹣5≤x≤﹣1};(Ⅱ)d(A,M)的最小值.即d(A,M)=|x+2|+|y+4|≥|(x+2)﹣(x+4)|=2当且仅当(x+2)(x+4)≤0,即﹣4≤x≤﹣2时取等号.故当﹣4≤x≤﹣2时,d(A,M)的最小值为2.19.已知函数f(x)=xlnx.(Ⅰ)求f(x)的最小值;(Ⅱ)若对所有x≥1都有f(x)≥ax﹣1,求实数a的取值范围.(Ⅲ)若关于x的方程f(x)=b恰有两个不相等的实数根,求实数b的取值范围.参考答案:【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值;(Ⅱ)a≤lnx+(x≥1)恒成立,令g(x)=lnx+,则a≤g(x)min(x≥1)恒成立;根据函数的单调性求出g(x)的最小值,从而求出a的范围即可;(Ⅲ)问题转化为y=b和y=f(x)在(0,+∞)有两个不同的交点,根据函数的单调性求出b的范围即可.【解答】解:(Ⅰ)f(x)的定义域是(0,+∞),f′(x)=1+lnx,令f′(x)>0,解得:x>,令f′(x)<0,解得:0<x<,故f(x)在(0,)递减,在(,+∞)递增,故f(x)min=f()=ln=﹣;(Ⅱ)∵f(x)=xlnx,当x≥1时,f(x)≥ax﹣1恒成立?xlnx≥ax﹣1(x≥1)恒成立?a≤lnx+(x≥1)恒成立,令g(x)=lnx+,则a≤g(x)min(x≥1)恒成立;∵g′(x)=﹣=,∴当x≥1时,f′(x)≥0,∴g(x)在.(Ⅲ)若关于x的方程f(x)=b恰有两个不相等的实数根,即y=b和y=f(x)在(0,+∞)有两个不同的交点,由(Ⅰ)0<x<时,f(x)<0,f(x)在(0,)递减,在(,+∞)递增,f(x)min=f()=ln=﹣;故﹣<b<0时,满足y=b和y=f(x)在(0,+∞)有两个不同的交点,即若关于x的方程f(x)=b恰有两个不相等的实数根,则﹣<b<0.20.已知复平面内的点A,B对应的复数分别为,(),设对应的复数为z.(1)当实数m取何值时,复数z是纯虚数;(2)若复数z在复平面上对应的点位于第四象限,求实数m的取值范围.参考答案:(1);(2).【分析】(1)求出,z是纯虚数,虚部不为0,实部为0,即可求解;(2)根据的值,求出对应点到坐标,根据已知列出不等式,即可求出结论.【详解】点A,B对应的复数分别为,对应的复数为z,,(1)复数z是纯虚数,,解得,;(2)复数z在复平面上对应的点坐标为,位于第四象限,,即,.【点睛】本题考查复数的代数表示法、几何意义、复数的分类,属于基础题.21
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海高考语文三年模拟真题(21-23年)知识点汇编-写作
- 2024版房屋装潢设计协议
- 保密协议书案例
- 保险赔款转让协议法律效力分析
- 屋面翻新合同参考
- 2024年食品企业员工保密协议
- 商场专柜权益转让协议样本
- 房屋转租合同样本简单版
- 农民集体土地搬迁补偿协议范本
- 起始人协议书(企业转型)专业版
- 南京市2024-2025学年五年级上学期11月期中调研数学试卷一(有答案)
- GB/T 44693.2-2024危险化学品企业工艺平稳性第2部分:控制回路性能评估与优化技术规范
- 2024-2025学年新教材高中政治 第一单元 探索世界与把握规律 3.2 世界是永恒发展的说课稿 部编版必修4
- 5.2 生活中的透镜课件八年级物理上册(人教版2024)
- 2024年银行考试-平安银行考试近5年真题附答案
- 2024年宁夏石嘴山市科技馆招聘工作人员3人历年高频难、易错点500题模拟试题附带答案详解
- 人教版三年级语文上册:期中测试卷
- 高级公安执法资格考试模拟考试题(一)
- 期中阶段模拟测试(试题)-2024-2025学年统编版四年级语文上册
- 水疗会所策划方案
- 肺癌(肺恶性肿瘤)中医临床路径
评论
0/150
提交评论