版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《椭圆及其标准方程》教学设计一、概述1.《椭圆及其标准方程》是高中数学选修1-1(人教版)2.1.1中的内容,分三课时完成.第一课时讲解椭圆的定义及其标准方程;第二课时讲解运用椭圆的定义及其标准方程解题,巩固求曲线方程的两种基本方法,即待定系数法、定义法;第三课时讲解运用中间变量法求动点轨迹方程的基本思路。本节是第一课时.2.本节内容是继学生学习了直线和圆的方程,对曲线的方程的概念有了一定了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法研究曲线。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础.因此这节课有承前启后的作用,是本章和本节的重点内容之一。3.运用多媒体形象地给出椭圆,通过让学生自已动手作图,“定性”地画出椭圆,再通过坐标法“定量”地描述椭圆,使之从感性到理性抽象概括,形式概念,推出方程。二、教学目标分析1.知识与技能目标:掌握椭圆的定义和标准方程;明确焦点、焦距的概念;理解椭圆标准方程的推导。2.过程与方法目标:通过让学生积极参与、亲身经历椭圆定义和标准方程的获得过程;体验坐标法在处理几何问题中的优越性,从而进一步掌握求曲线方程的方法和数形结合的思想,提高运用坐标法解决几何问题的能力及运算能力。3.情感态度与价值观目标:通过主动探究、合作学习,相互交流,感受探索的乐趣与成功的喜悦,养成实事求是的科学态度和契而不舍的钻研精神。培养学生自主学习的能力。以查找“神舟7号”有关材料,激发学生学习数学的兴趣,增强学生的数学应用意识、创新意识,扩展学生的数学视野,并让学生受到爱国主义思想的教育。三、学习者特征分析1.在此之前,学生已学过坐标法解决几何问题,学过圆的定义与标准方程,但掌握不够,2.从研究圆到研究椭圆,跨度较大,学生思维上存在障碍.3.在求椭圆标准方程时,会遇到比较复杂的根式化简问题,而这些在目前初中代数中都没有详细介绍,初中代数不能完全满足学习本节的需要。4.该班学生是高二文科生,数学基础整体较差。5.经过近一学期的引导、鼓励,学生学习数学的积极性较高。四、教学策略选择与设计1、教法设计:采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。2、学法设计:自主探究,合作交流要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的“再创造”过程。3、教学手段:多媒体辅助教学.通过动态演示,有利于引起学生的学习兴趣,激发学生的学习热情,增大知识信息的容量,使内容充实、形象、直观,提高教学效率和教学质量.五、教学资源与工具设计1.多媒体教室2.每个学生准备一段细线、两枚大头针或图钉3.上网搜索有关神舟系列火箭运行轨迹图五、教学程序(一)创设情景,提出课题Ppt图片(神舟[问一]“神舟7号”围绕地球运行轨迹是什么图形?(二)自主探究,形成概念[问二]动点按照某种规律运动形成的轨迹叫曲线,那么椭圆是满足什么条件的轨迹呢?教师引导:要想知道椭圆是满足什么条件的点的轨迹,首先要知道椭圆的画法。于是让学生拿出课前准备好的一块纸板,一段细绳,两枚图钉,按课本上介绍的方法,同桌间相互磋商、动手绘图,教师巡视,并抽已完成的两位同学在黑板上用准备好的工具演示,使学生尝试到成功的喜悦.。教师进一步启发引导学生讨论,得出“到两个定点的距离的和等于常数的点的轨迹是椭圆”[思考]1.在纸板上作图说明了什么?2.在绳长(设为2a)不变的条件下,(1)当两个图钉重合在一点时,画出的图形是什么?(2)改变两个图钉之间的距离,画出的图形是什么?(3)当两个图钉之间的距离等于绳长时,画出的图形是什么?(4)当两图钉固定,能使绳长小于两图钉之间的距离吗?能画出图形吗?3.学生自己概括椭圆定义.定义平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。在归纳定义时,再次强调定义要满足三个条件:①平面内(这是大前提);②任意一点到两个定点的距离的和等于常数;③常数大于|F1F2|.(三)师生互动,导出方程给出椭圆的定义后,教师即可指出:由椭圆定义,知道了它的基本几何特征,这只是一种“定性”的描述,但是对于这种曲线还具有哪些性质,尚需进一步研究.根据解析几何的基本思想方法,我们需要利用坐标法先建立椭圆的方程“定量”的描述,然后通过对椭圆的方程的讨论,来研究其几何性质.[问三]1.求曲线方程的一般步骤是什么?2.建立坐标系的一般原则有哪些?学生围绕以上问题思考,讨论可得:求曲线方程的一般步骤——建系、设点、写出点集、列出方程、化简方程、证明(可省略).建系的一般原则为:使已知点的坐标和曲线的方程尽可能简单,即原点取在定点或定线段的中点,坐标轴取在定直线上或图形的对称轴上,充分利用图形的对称性.[问四]怎样建立坐标系,才能使求出的椭圆方程最为简单?通过前面知识的回忆,学生思考、相互交流,很容易选定下列建立坐标系的方案.建系:以两定点F1、F2的连线为x轴,以线段F1F2的垂直平分线为y轴,建立坐标系,如图1设点:设M(x,y)为椭圆上任意一点,|F1F2|=2c(c>0),则有F1(-c,0)、F2(c,0).又设M与F1和F2的距离的和等于常数2a(a>0).3、列出方程到此为止,学生以为椭圆的方程已求出,此时教师可以指出:为了更进一步利用方程探讨椭圆的其他性质需要尽量简化方程形式,使数量关系更加明朗化.4.化简方程:学生对含有两个根式之和的等式进行化简有一定困难,采用以下方法突破难点:首先让学生明确,含根号的等式化简的目的就是要去掉根号,变无理式为有理式;启发学生,化简含两个根式之和的等式,只要将两个根式分别放在等号两边,其中一边只含一个根式,平方一次后即可转化为只含一个根式的化简问题.教师引导学生化简,得到(a2-c2)x2+a2y2=a2(a2-c2).指出:此方程形式还不够简捷,还有变形的必要再简化。先简化a2-c2,∵a>c,∴a2-c2>0,令a2-c2=b2,则方程化为b2x2+a2y2=a2b2,联想到直线截距式方程,两边同除以a2b2得,(a>b>0)指出:方程(a>b>0)叫做椭圆的标准方程,此时,椭圆的焦点在x轴上,F1(-c,0)F2(c,0),这里,c2=a2-b2[问五]如果焦点F1、F2在y轴上,并且点O与线段F1F2的中点重合,a、b、c的意义同上,椭圆的方程形式又如何呢?学生互相讨论,交流,合情猜想,动手验证可得(a>b>0)指出:(a>b>0)叫做椭圆的标准方程,此时,椭圆的焦点在y轴上,F1(0,-c),F2(0,c),这里,c2=a2-b2为了加深对椭圆的两种标准方程的理解,比较椭圆的两种标准方程,填表.(学生讨论回答,教师板书)不同点标准方程图形焦点坐标共同点定义a、b、c的关系焦点位置的判定(四)初步运用,强化理解例题1.判定下列椭圆的焦点在哪个轴上,并指明a2,b2和焦点坐标.(1)(2)2.椭圆2x2-3y2=1焦点坐标为3.椭圆的焦距是,焦点坐标为;若AB是过下焦点F1的弦,则△F1AB的周长是图3(五)自我评价,反馈调节1.椭圆上一点P到焦点F1的距离等于6,则点P到另一个焦点F2的距离是2.动点P到定点F1(-5,0),F2(5,0)的距离的和是10,则动点P的轨迹为()(A)椭圆(B)线段F1F2(C)直线F1F2(D)不能确定3.简化方程:4.椭圆mx2+ny2=-mn(m<n<0)的焦点坐标是(学生分组比赛,每组抽2位同学的作业用幻灯演示,教师订正。(六)知识整理,形成系统(由学生归纳,教师完善)1.椭圆的定义(注意定义中的三个条件)2.椭圆的标准方程(注意焦点的位置与方程形式的关系)3.解析几何的基本思想(七)布置作业,巩固提高(学有余力的学生全做,其余学生不做探究题)1.课本习题p36练习第1、2、3题2.课后探究题:将推导椭圆方程过程中得到的方程a2-cx=a变形为后观察式子的几何意义,提出合理猜想。五、课后反思本节课围绕“层层设问自主探索发现规律归纳总结”这一主线展开,对教材内容进行优化组合,在教学过程中,学生通过观看图片,动手实践,自己总结出椭圆定义,符合从感性上升为理性的认知规律,而且提升了抽象概括的能力.同时在进行推导椭圆的标准方程的过程中,提高了利用坐标法解决几何问题的能力及运算能力.在整节课中,教师作为引导者,利用“神舟7号”围绕地球运行轨迹的演示,激发学生学习数学的兴趣,鼓励学生大胆探索,勇于创新,提高学生参与数学活动的兴趣和积极性,同时设置了不同层次的知识面,以适应不同学生的认知过程.增强了学生的自信心,基本体现了新课标中让学生自主学习的教学理念.
学情分析本节内容是继学生学习了直线和圆的方程,对曲线的方程的概念有了一定了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法研究曲线。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础.因此这节课有承前启后的作用,是本章和本节的重点内容之一。效果分析本节课围绕“层层设问,自主探索,发现规律,归纳总结”这一主线展开,对教材内容进行优化组合,在教学过程中,学生通过观看图片,动手实践,自己总结出椭圆定义,符合从感性上升为理性的认知规律,而且提升了抽象概括的能力.同时在进行推导椭圆的标准方程的过程中,提高了利用坐标法解决几何问题的能力及运算能力.在整节课中,教师作为引导者,利用“神舟7号”围绕地球运行轨迹的演示,激发学生学习数学的兴趣,鼓励学生大胆探索,勇于创新,提高学生参与数学活动的兴趣和积极性,同时设置了不同层次的知识面,以适应不同学生的认知过程.增强了学生的自信心,基本体现了新课标中让学生自主学习的教学理念.教材分析1.《椭圆及其标准方程》是高中数学选修1-1(人教版)2.1.1中的内容,分三课时完成.第一课时讲解椭圆的定义及其标准方程;第二课时讲解运用椭圆的定义及其标准方程解题,巩固求曲线方程的两种基本方法,即待定系数法、定义法;第三课时讲解运用中间变量法求动点轨迹方程的基本思路。本节是第一课时.2.本节内容是继学生学习了直线和圆的方程,对曲线的方程的概念有了一定了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法研究曲线。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础.因此这节课有承前启后的作用,是本章和本节的重点内容之一。3.运用多媒体形象地给出椭圆,通过让学生自已动手作图,“定性”地画出椭圆,再通过坐标法“定量”地描述椭圆,使之从感性到理性抽象概括,形式概念,推出方程。评测练习例题1.判定下列椭圆的焦点在哪个轴上,并指明a2,b2和焦点坐标.(1)(2)2.椭圆2x2-3y2=1焦点坐标为3.椭圆的焦距是,焦点坐标为;若AB是过下焦点F1的弦,则△F1AB的周长是图3(五)自我评价,反馈调节1.椭圆上一点P到焦点F1的距离等于6,则点P到另一个焦点F2的距离是2.动点P到定点F1(-5,0),F2(5,0)的距离的和是10,则动点P的轨迹为()(A)椭圆(B)线段F1F2(C)直线F1F2(D)不能确定3.简化方程:4.椭圆mx2+ny2=-mn(m<n<0)的焦点坐标是(学生分组比赛,每组抽2位同学的作业用幻灯演示,教师订正。(六)知识整理,形成系统(由学生归纳,教师完善)1.椭圆的定义(注意定义中的三个条件)2.椭圆的标准方程(注意焦点的位置与方程形式的关系)3.解析几何的基本思想(七)布置作业,巩固提高课本习题p36练习第1、2、3题课后反思本节课围绕“层层设问自主探索发现规律归纳总结”这一主线展开,对教材内容进行优化组合,在教学过程中,学生通过观看图片,动手实践,自己总结出椭圆定义,符合从感性上升为理性的认知规律,而且提升了抽象概括的能力.同时在进行推导椭圆的标准方程的过程中,提高了利用坐标法解决几何问题的能力及运算能力.在整节课中,教师作为引导者,利用“神舟7号”围绕地球运行轨迹的演示,激发学生学习数学的兴趣,鼓励学生大胆探索,勇于创新,提高学生参与数学活动的兴趣和积极性,同时设置了不同层次的知识面,以适应不同学生的认知过程.增强了学生的自信心,基本体现了新课标中让学生自主学习的教学理念.
课标分析一、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州大学《全媒体新闻写作与编辑》2023-2024学年第一学期期末试卷
- 贵州财经职业学院《办公室空间设计》2023-2024学年第一学期期末试卷
- 贵阳幼儿师范高等专科学校《高分子材料分析测试与研究方法》2023-2024学年第一学期期末试卷
- 2025黑龙江省安全员考试题库
- 贵阳信息科技学院《现代基础医学概论Ⅰ》2023-2024学年第一学期期末试卷
- 硅湖职业技术学院《社会网络分析》2023-2024学年第一学期期末试卷
- 贵阳学院《微生物基因工程》2023-2024学年第一学期期末试卷
- 2025年安徽建筑安全员-A证考试题库附答案
- 广州新华学院《学术规范与科技论文写作车辆》2023-2024学年第一学期期末试卷
- 广州卫生职业技术学院《语文课堂教学技能与微格训练》2023-2024学年第一学期期末试卷
- 人教版高一化学方程式大全
- JBT 7048-2011 滚动轴承 工程塑料保持架 技术条件
- Pre-IPO阶段融资策略研究
- 陶艺校本课程实施方案(教学资料)
- 2024年山东省机场管理集团威海国际机场有限公司招聘笔试参考题库含答案解析
- 国际货物运输委托代理合同(中英文对照)全套
- 银行反恐应急预案及方案
- 关于推某某同志担任教育系统实职领导职务的报告(职务晋升)
- 2023消防安全知识培训
- Exchange配置与规划方案专项方案V
- 三年级上册脱式计算练习200题及答案
评论
0/150
提交评论