2022-2023学年湖北省襄阳市枣阳第一中学高二数学文模拟试卷含解析_第1页
2022-2023学年湖北省襄阳市枣阳第一中学高二数学文模拟试卷含解析_第2页
2022-2023学年湖北省襄阳市枣阳第一中学高二数学文模拟试卷含解析_第3页
2022-2023学年湖北省襄阳市枣阳第一中学高二数学文模拟试卷含解析_第4页
2022-2023学年湖北省襄阳市枣阳第一中学高二数学文模拟试卷含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年湖北省襄阳市枣阳第一中学高二数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若点(1,3)和(-4,-2)在直线2+m=0的两侧,是则取值范围m的(

)A.m<-5或m>10

B.m=-5或m=10

C.-5<m<10

D.-5≤m≤10参考答案:C2.不等式≥0的解集是(

)A.[2,+∞)

B.∪(2,+∞)C.(-∞,1)

D.(-∞,1)∪[2,+∞)参考答案:D3.已知,若,则=(

)A.0.2

B.0.3 C.0.7

D.0.8参考答案:D略4.若是两个非零向量,且,则与的夹角为(

)A.30° B.45° C.60° D.90°参考答案:A【分析】画出图像:根据计算夹角为,再通过夹角公式计算与的夹角.【详解】形成一个等边三角形,如图形成一个菱形.与的夹角为30°故答案选A【点睛】本题考查了向量的加减和夹角,通过图形可以简化运算.5.已知定义在R上的可导函数的图象如图所示,则不等式的解集为(

)A.B.C.D.参考答案:D6.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为

(

)14

24

28

48参考答案:A略7.下列说法中正确的个数为(

)个①在对分类变量和进行独立性检验时,随机变量的观测值越大,则“与相关”可信程度越小;②在回归直线方程中,当解释变量每增加一个单位时,预报变量增加0.1个单位;③两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;④在回归分析模型中,若相关指数越大,则残差平方和越小,模型的拟合效果越好.A.1 B.2 C.3 D.4参考答案:C本题主要考查的是命题的真假判断与应用以及回归分析和独立性检验的理论基础,意在考查学生分析问题、解决问题的能力.对于①,在对分类变量和进行独立性检验时,随机变量的观测值越大,则“与相关”可信程度越大,故①错误;对于②,在回归直线方程中,当解释变量每增加一个单位时,预报变量增加0.1个单位,故②正确;对于③,两个随机变量的线性相关性越强,相关系数的绝对值越接近于1,故③正确;对于④,在回归分析模型中,若相关指数越大,则残差平方和越小,模型的拟合效果越好,故④正确;故选C.8.如图所示的是2008年北京奥运会的会徽,其中的“中国印”由四个色块构成,可以用线段在不穿越其他色块的条件下将其中任意两个色块连接起来(如同架桥).如果用三条线段将这四个色块连接起来,不同的连接方法的种数共有()A.8种

B.12种

21世纪教育网C.16种

D.20种参考答案:C问题可转化为分离的4个区域,用3条线段将其连接起来,不同的连接方案有多少种?如右图,分别连接A、B、C、D四点的线段共有6条,任意选3条有C种连接方法,其中A—B—C—A,A—B—D—A,A—C—D—A,B—C—D—B四种情况不合题意,应舍去,所以共有C-4=20-4=16(种).9.为了得到函数的图象,只需把函数的图象上所有的点(

)A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度参考答案:D【分析】通过变形,通过“左加右减”即可得到答案.【详解】根据题意,故只需把函数的图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.【点睛】本题主要考查三角函数的平移变换,难度不大.10.等于(

)

A.

B.

C.

D.参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.下列命题: ①在一个2×2列联表中,由计算得k2=6.679,则有99%的把握确认这两个变量间有关系. ②随机变量X服从正态分布N(1,2),则P(X<0)=P(x>2); ③若二项式的展开式中所有项的系数之和为243,则展开式中x﹣4的系数是40 ④连掷两次骰子得到的点数分别为m,n,记向量=(m,n)与向量=(1,﹣1)的夹角为θ,则θ∈(0,]的概率是. ⑤若(x﹣2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=31; 其中正确命题的序号为. 参考答案:①②④⑤【考点】命题的真假判断与应用. 【专题】对应思想;综合法;简易逻辑. 【分析】①利用独立性检查的性质进行判断. ②利用正态分布的对称性进行判断. ③根据二项式定理的内容进行判断. ④利用古典概型的概率公式进行判断. ⑤利用赋值法结合二项式定理进行判断. 【解答】解:①在一个2×2列联表中,由计算得K2=6.679>6.535,∴有99%的把握确认这两个变量间有关系,正确, ②随机变量X服从正态分布N(1,2),则图象关于x=1对称,则P(X<0)=P(x>2);正确, ③若二项式的展开式中所有项的系数之和为243, 则令x=1,得到(1+2)n=243,即3n=243,解得n=5, ∴展开式的通项为Tr+1=, 令5﹣3r=﹣4,解得r=3, ∴x﹣4的系数为23C=80.则展开式中x﹣4的系数是80,故③错误, ④试验发生包含的所有事件数6×6=36个, ∵m>0,n>0, ∴=(m,n)与=(1,﹣1)不可能同向. ∴夹角θ≠0. ∵θ∈(0,],≥0,∴m﹣n≥0, 即m≥n.当m=6时,n=6,5,4,3,2,1;当m=5时,n=5,4,3,2,1;当m=4时,n=4,3,2,1; 当m=3时,n=3,2,1;当m=2时,n=2,1;当m=1时,n=1. ∴满足条件的事件数6+5+4+3+2+1=21个 ∴概率P==. 则θ∈(0,]的概率是.故③正确, ⑤若(x﹣2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,令x=0,得a0=﹣25=﹣32, 令x=1得(1﹣2)5=a5+a4+a3+a2+a1+a0=﹣1,则a1+a2+a3+a4+a5=32﹣1=31;故⑤正确, 故答案为:①②④⑤ 【点评】本题主要考查命题的真假判断,涉及二项式定理,独立性检验以及古典概型的概率计算,正态分布,综合性较强,内容较多. 12.在Rt△ABC中,∠A=90°,AB=1,BC=2.在BC边上任取一点M,则∠AMB≥90°的概率为

.参考答案:略13.若复数(m2-5m+6)+(m2-3m)i是纯虚数,则实数m=____________。参考答案:2略14.一城市的汽车牌照是由到的10个数字和除、外的个字母组成的位号码,要求后三位必须是数字,前两位可以数字或字母,字母前面不能有数字,数字不能全为.那么,这个城市最多可以发放的牌照数是

.(以数字作答)参考答案:91539915.若A、B、C分别是的三内角,则的最小值为_________。参考答案:略16.已知F1、F2是椭圆的两个焦点,P为椭圆C上的一点,且⊥.若△PF1F2的面积为9,则b=________.参考答案:317.已知椭圆+y2=1的左右焦点为F1,F2,P为椭圆椭圆上任一点,则|PF1|?|PF2|的最大值为.参考答案:4【考点】椭圆的简单性质.【分析】由椭圆方程求出椭圆的长半轴长和椭圆的离心率,由焦半径公式得到|PF1|,|PF2|,作积后由x的范围求得|PF1|?|PF2|的最大值.【解答】解:由椭圆+y2=1,得a=2,b=1,c=,∴e=,设P(x,y),由焦半径公式得|PF1|=2﹣x,|PF2|=2+x,∴|PF1|?|PF2|=(2﹣x)(2+x)=4﹣x2,∵x∈[﹣2,2]∴当x=0时,|PF1|?|PF2|的最大值是4.故答案为:4.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设命题p:f(x)=在区间(1,+∞)上是减函数;命题q:x1,x2是方程x2-ax-2=0的两个实根,且不等式m2+5m-3≥|x1-x2|对任意的实数a∈[-1,1]恒成立.若p∧q为真,试求实数m的取值范围.

参考答案:略19.(本小题满分12分)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为且他们是否破译出密码互不影响.

(Ⅰ)求恰有二人破译出密码的概率;(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.参考答案:解:记“第i个人破译出密码”为事件A1(i=1,2,3),依题意有且A1,A2,A3相互独立.(Ⅰ)设“恰好二人破译出密码”为事件B,则有B=A1·A2··A1··A3+·A2·A3且A1·A2·,A1··A3,·A2·A3彼此互斥于是P(B)=P(A1·A2·)+P(A1··A3)+P(·A2·A3)==.(Ⅱ)设“密码被破译”为事件C,“密码未被破译”为事件D.D=··,且,,互相独立,则有P(D)=P()·P()·P()==.而P(C)=1-P(D)=,故P(C)>P(D).20.对任意实数都有恒成立,求实数的取值范围.参考答案:试题分析:对于这类不等式恒成立问题,考虑两种情况,一种是当时的情况,另一种是当时,不等式为一元二次不等式,若其恒大于0,即开口向上,并且和x轴没有交点,即等价于.试题解析:当时,对任意实数都有恒成立;当时,对任意实数都有恒成立解得.综上可知,.考点:不等式恒成立问题21.定义在R上的函数y=f(x)对任意的x、y∈R,满足条件:f(x+y)=f(x)+f(y)﹣1,且当x>0时,f(x)>1.(1)求f(0)的值;(2)证明:函数f(x)是R上的单调增函数;(3)解关于t的不等式f(2t2﹣t)<1.参考答案:【分析】(1)用赋值法分析:在f(x+y)=f(x)+f(y)﹣1中,令x=y=0可得:f(0)=f(0)+f(0)﹣1,解可得f(0)的值,即可得答案;(2)用定义法证明:设x1>x2,则x1=x2+(x1﹣x2),且(x1﹣x2)>0,结合题意可得f(x1)=f[(x1﹣x2)+x2]=f(x2)+f(x1﹣x2)﹣1,作差可得f(x1)﹣f(x2)=f(x1﹣x2)﹣1,分析可得f(x1)﹣f(x2)>0,由增函数的定义即可得证明;(3)根据题意,结合函数的奇偶性与f(0)=1可得2t2﹣t<0,解可得t的取值范围,即可得答案.【解答】解:(1)根据题意,在f(x+y)=f(x)+f(y)﹣1中,令x=y=0可得:f(0)=f(0)+f(0)﹣1,解可得:f(0)=1,(2)证明:设x1>x2,则x1=x2+(x1﹣x2),且x1﹣x2>0,则有f(x1)=f[(x1﹣x2)+x2]=f(x2)+f(x1﹣x2)﹣1,即f(x1)﹣f(x2)=f(x1﹣x2)﹣1,又由x1﹣x2>0,则有f(x1﹣x2)>1,故有f(x1)﹣f(x2)=f(x1﹣x2)﹣1>0,即函数f(x)为增函数;(3)根据题意,f(2t2﹣t)<1,又由f(0)=1且函数f(x)为增函数,则有2t2﹣t<0,解可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论