初中数学沪科版七年级下册分式9.3分式方程-“江南联赛”一等奖_第1页
初中数学沪科版七年级下册分式9.3分式方程-“江南联赛”一等奖_第2页
初中数学沪科版七年级下册分式9.3分式方程-“江南联赛”一等奖_第3页
初中数学沪科版七年级下册分式9.3分式方程-“江南联赛”一等奖_第4页
初中数学沪科版七年级下册分式9.3分式方程-“江南联赛”一等奖_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

9.3.2分式方程的实际应用分式方程的实际应用问题引入1.解分式方程的基本思路是什么?2.解分式方程有哪几个步骤?3.验根有哪几种方法?分式方程整式方程转化去分母一化二解三检验有两种方法:第一种是代入最简公分母;第二种代入原分式方程.通常使用第一种方法.9.3.2分式方程的实际应用4.我们现在所学过的应用题有哪几种类型?每种类型的基本公式是什么?基本上有4种:(1)行程问题:路程=速度×时间以及它的两个变式;(2)数字问题:在数字问题中要掌握十进制数的表示法;(3)工程问题:

工作量=工时×工效以及它的两个变式;(4)利润问题:批发成本=批发数量×批发价;批发数量=批发成本÷批发价;打折销售价=定价×折数;销售利润=销售收入一批发成本;每本销售利润=定价一批发价;每本打折销售利润=打折销售价一批发价,利润率=利润÷进价。9.3.2分式方程的实际应用5.列方程解应用题的一般步骤:1.审清题意;2.设未知数(要有单位);3.列代数式,找出等量关系式,建立方程;4.解方程(组);5.验根;6.写答案(要有单位).9.3.2分式方程的实际应用有一并联电路,如图,两电阻阻值分别为R1,R2,总电阻阻值为R,三者关系为:若已知R1,R2求R.例1例题讲解9.3.2分式方程的实际应用方程两边同乘以RR1R2,得R1R2=RR2+RR1,即R1R2=R(R1+R2).因为R1,R2都是正数,所以R1+R2≠0.两边同除以(R1+R2),得解:9.3.2分式方程的实际应用七年级甲、乙两班师生前往郊区参加义务植树活动,已知甲班每天比乙班多种10棵树,如果分配给甲、乙两班的植树任务分别是150棵和120棵,问两个班每天各植树多少棵,才能同时完成任务?例29.3.2分式方程的实际应用设乙班每天植树x棵,那么甲班每天植树(x+10)棵,甲班完成任务需天,乙班完成任务需

天.要求同时完成任务,即x应满足下列等式:解方程,得x=40.

解:9.3.2分式方程的实际应用检验:x=40是原方程的根.此时x+10=50.因而,当乙班每天植树40棵,甲班每天植树50棵时,两个班能同时完成任务.9.3.2分式方程的实际应用例3

两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?表格法分析如下:工作时间(月)工作效率工作总量(1)甲队乙队等量关系:甲队完成的工作总量+乙队完成的工作总量=“1”设乙单独完成这项工程需要x天.9.3.2分式方程的实际应用解:设乙单独完成这项工程需要x个月.记工作总量为1,甲的工作效率是,根据题意得即方程两边都乘以6x,得解得x=1.

检验:当x=1时,6x≠0.所以,原分式方程的解为x=1.由上可知,若乙队单独施工1个月可以完成全部任务,而甲队单独施工需3个月才可以完成全部任务,所以乙队的施工速度快.9.3.2分式方程的实际应用想一想:本题的等量关系还可以怎么找?甲队单独完成的工作总量+两队合作完成的工作总量=“1”此时表格怎么列,方程又怎么列呢?工作时间(月)工作效率工作总量(1)甲单独两队合作设乙单独完成这项工程需要x天.则乙队的工作效率是甲队的工作效率是,合作的工作效率是.此时方程是:1表格为“3行4列”9.3.2分式方程的实际应用例4

朋友们约着一起开着2辆车自驾去黄山玩,其中面包车为领队,小轿车车紧随其后,他们同时出发,当面包车车行驶了200公里时,发现小轿车车只行驶了180公里,若面包车的行驶速度比小轿车快10km/h,请问面包车,小轿车的速度分别为多少km/h?01802009.3.2分式方程的实际应用路程速度时间面包车小轿车200180x+10x分析:设小轿车的速度为x千米/小时

面包车的时间=小轿车的时间

等量关系:

列表格如下:9.3.2分式方程的实际应用解:设小轿车的速度为x千米/小时,则面包车速度为x+10千米/小时,依题意得解得x=90经检验,x=90是原方程的解,且x=90,x+10=100,符合题意.答:面包车的速度为100千米/小时,小轿车的速度为90千米/小时.注意两次检验:(1)是否是所列方程的解;(2)是否满足实际意义.9.3.2分式方程的实际应用例5

国家实施高效节能电器的财政补贴政策,某款空调在政策实施后,客户每购买一台可获得补贴200元,若同样用11万元购买此款空调,补贴后可购买的台数比补贴前多10%,则该款空调补贴前的售价为多少元?分析:本题涉及的等量关系为补贴前11万元购买的台数×(1+10%)=补贴后11万元购买的台数.9.3.2分式方程的实际应用解:设该款空调补贴前的售价为每台x元,由上述等量关系可得如下方程:即方程两边同乘最简公分母x(x-200),解得x=2200.得1.1(x-200)=x.检验:把x=2200代入x(x-200)中,它的值不等于0,因此x=2200是原方程的根,且符合题意.答:该款空调补贴前的售价为每台2200元.9.3.2分式方程的实际应用当堂练习1.几名同学包租一辆面包车去旅游,面包车的租价为180元,出发前,又增加两名同学,结果每个同学比原来少分摊3元车费,若设原来参加旅游的学生有x人,则所列方程为(

)A9.3.2分式方程的实际应用2.一轮船往返于A、B两地之间,顺水比逆水快1小时到达.已知A、B两地相距80千米,水流速度是2千米/小时,求轮船在静水中的速度.x=-18(不合题意,舍去),解:设船在静水中的速度为x千米/小时,根据题意得解得x=±18.检验得:x=18.答:船在静水中的速度为18千米/小时.方程两边同乘(x-2)(x+2)得80x+160-80x+160=x2-4.9.3.2分式方程的实际应用3.农机厂到距工厂15千米的向阳村检修农机,一部分人骑自行车先走,过了40分钟,其余人乘汽车去,结果他们同时到达,已知汽车的速度是自行车的3倍,求两车的速度.解:设自行车的速度为x千米/时,那么汽车的速度是

3x千米/时,依题意得:解得

x=15.经检验,x=15是原方程的根.由x=15得3x=45.答:自行车的速度15千米/时,汽车的速度45千米/时.9.3.2分式方程的实际应用4.某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题:同学们,请求出篮球和排球的单价各是多少元?9.3.2分式方程的实际应用解:设排球的单价为x元,则篮球的单价为(x+60)元,根据题意,列方程得解得x=100.经检验,x=100是原方程的根,当x=100时,x+60=160.答:排球的单价为100元,篮球的单价为160元.9.3.2分式方程的实际应用5.

佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次多20千克,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.(1)求第一次水果的进价是每千克多少元?解析:根据第二次购买水果数多20千克,可得出方程,解出即可得出答案;9.3.2分式方程的实际应用解:(1)设第一次购买的单价为x元,则第二次的单价为1.1x元,根据题意得,解得x=6.经检验,x=6是原方程的解.答:第一次水果的进价为每千克6元.9.3.2分式方程的实际应用(2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?解析:(2)先计算两次购买水果的数量,赚钱情况:销售的水果量×(实际售价-当次进价),两次合计,就可以求得是盈利还是亏损了.(2)第一次购买水果1200÷6=200(千克).第二次购买水果200+20=220(千克).第一次赚钱为200×(8-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论