版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024学年江苏省苏州大学附属中学高二上数学期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的左、右焦点分别为、,点A是椭圆短轴的一个顶点,且,则椭圆的离心率()A. B.C. D.2.已知方程表示焦点在轴上的椭圆,则实数的取值范围是()A. B.C. D.3.已知双曲线的焦点为,,其渐近线上横坐标为的点满足,则()A. B.C.2 D.44.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若,则|QF|=()A. B.C.3 D.25.直线的倾斜角为()A.150° B.120°C.60° D.30°6.设命题,则为A. B.C. D.7.设点是点,,关于平面的对称点,则()A.10 B.C. D.388.已知点F为抛物线C:的焦点,点,若点Р为抛物线C上的动点,当取得最大值时,点P恰好在以F,为焦点的椭圆上,则该椭圆的离心率为()A. B.C. D.9.抛物线的准线方程是A. B.C. D.10.已知等比数列的公比为,则“”是“是递增数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.函数的部分图像为()A. B.C. D.12.《张邱建算经》记载:今有女子不善织布,逐日织布同数递减,初日织五尺,末一日织一尺,计织三十日,问第11日到第20日这10日共织布()A.30尺 B.40尺C.6尺 D.60尺二、填空题:本题共4小题,每小题5分,共20分。13.将由2,5,8,11,14,…组成的等差数列,按顺序写在练习本上,已知每行写13个,每页有21行,则5555在第______页第______行.(用数字作答)14.圆关于y轴对称的圆的标准方程为___________.15.据相关数据统计,部分省市的政府工作报告将“推进5G通信网络建设”列入2020年的重点工作,2020年一月份全国共建基站3万个如果从2月份起,以后的每个月比上一个月多建设0.2万个,那么2020年这一年全国共有基站________万个16.已知椭圆的两个焦点分别为,,,点在椭圆上,若,且的面积为4,则椭圆的标准方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列中,,.(1)求的通项公式;(2)求的前项和的最大值.18.(12分)求适合下列条件的圆锥曲线的标准方程(1)中心在原点,实轴在轴上,一个焦点在直线上的等轴双曲线;(2)椭圆的中心在原点,焦点在轴上,离心率等于,且它的一个顶点恰好是抛物线的焦点;(3)经过点抛物线19.(12分)在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.(1)求证:平面平面;(2)若,求直线与所成角的余弦值.20.(12分)已知函数.(1)求的单调递减区间;(2)在锐角中,,,分别为角,,的对边,且满足,求的取值范围.21.(12分)在正方体中,,,分别是,,的中点.(1)证明:平面平面;(2)求直线与所成角的正切值.22.(10分)如图,三棱锥中,,,,,,点是PA的中点,点D是AC的中点,点N在PB上,且.(1)证明:平面CMN;(2)求平面MNC与平面ABC所成角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】依题意,不妨设点A的坐标为,在中,由余弦定理得,再根据离心率公式计算即可.【题目详解】设椭圆的焦距为,则椭圆的左焦点的坐标为,右焦点的坐标为,依题意,不妨设点A的坐标为,在中,由余弦定理得:,,,,解得.故选:D.【题目点拨】本题考查椭圆几何性质,在中,利用余弦定理求得是关键,属于中档题.2、D【解题分析】根据已知条件可得出关于实数的不等式组,由此可解得实数的取值范围.【题目详解】因为方程表示焦点在轴上的椭圆,则,解得.故选:D.3、B【解题分析】由题意可设,则,再由,可得,从而可求出的值【题目详解】解:双曲线的渐近线方程为,故设,设,则,因为,所以,即,所以,因为,所以,因为,所以,故选:B4、C【解题分析】过点Q作QQ′⊥l交l于点Q′,利用抛物线定义以及相似得到|QF|=|QQ′|=3.【题目详解】如图所示:过点Q作QQ′⊥l交l于点Q′,因为,所以|PQ|∶|PF|=3∶4,又焦点F到准线l的距离为4,所以|QF|=|QQ′|=3.故选C.【题目点拨】本题考查了抛物线的定义应用,意在考查学生的计算能力.5、D【解题分析】由斜率得倾斜角【题目详解】直线的斜率为,所以倾斜角为30°.故选:D6、C【解题分析】特称命题的否定为全称命题,所以命题的否命题应该为,即本题的正确选项为C.7、A【解题分析】写出点坐标,由对称性易得线段长【题目详解】点是点,,关于平面的对称点,的横标和纵标与相同,而竖标与相反,,,,直线与轴平行,,故选:A8、D【解题分析】过点P引抛物线准线的垂线,交准线于D,根据抛物线的定义可知,记,根据题意,当最小,即直线与抛物线相切时满足题意,进而解出此时P的坐标,解得答案即可.【题目详解】如图,易知点在抛物线C的准线上,作PD垂直于准线,且与准线交于点D,记,则.由抛物线定义可知,.由图可知,当取得最大值时,最小,此时直线与抛物线相切,设切线方程为,代入抛物线方程并化简得:,,方程化为:,代入抛物线方程解得:,即,则,.于是,椭圆的长轴长,半焦距,所以椭圆的离心率.故选:D.9、C【解题分析】根据抛物线的概念,可得准线方程为10、B【解题分析】先分析充分性:假设特殊等比数列即可判断;再分析充分性,由条件得恒成立,再对和进行分类讨论即可判断.【题目详解】先分析充分性:在等比数列中,,所以假设,,所以,等比数列为递减数列,故充分性不成立;分析必要性:若等比数列的公比为,且是递增数列,所以恒成立,即恒成立,当,时,成立,当,时,不成立,当,时,不成立,当,时,不成立,当,时,成立,当,时,不成立,当,时,不恒成立,当,时,不恒成立,所以能使恒成立的只有:,和,,易知此时成立,所以必要性成立.故选:B.11、D【解题分析】先判断奇偶性排除C,再利用排除B,求导判断单调性可排除A.【题目详解】因为,所以为偶函数,排除C;因为,排除B;当时,,,当时,,所以函数在区间上单调递减,排除A.故选:D12、A【解题分析】由题意可知,每日的织布数构成等差数列,由等差数列的求和公式得解.【题目详解】由题女子织布数成等差数列,设第日织布为,有,所以,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、①.7②.17【解题分析】首先求出等差数列的通项公式,即可得到为第项,再根据每行每页的项数计算可得;【题目详解】解:由2,5,8,11,14,…组成的等差数列的通项公式为,令,解得又,,.所以555在第7页第17行故答案为:;14、【解题分析】根据题意可得圆心坐标为,半径为1,利用平面直角坐标系点关于坐标轴对称特征可得所求的圆心坐标为,半径为1,进而得出结果.【题目详解】由题意知,圆的圆心坐标为,半径为1,设圆关于y轴对称的圆为,所以,半径为1,所以的标准方程为.故答案为:15、2##【解题分析】由题意可知一月份到十二月份基站个数是以3为首项,0.2为公差的等差数列,根据等差数列求和公式可得答案.【题目详解】一月份全国共建基站3万个,2月全国共建基站万个,3月全国共建基站万个,,12月全国共建基站万个,基站个数是以3为首项,0.2为公差的等差数列,2020年这一年全国共有基站万个.故答案为:49.2.16、【解题分析】由题意得到为直角三角形.设,,根据椭圆的离心率,定义,直角三角形的面积公式,勾股定理建立方程的方程组,消元后可求得的值.【题目详解】由题可知,∴,又,代入上式整理得,由得为直角三角形又的面积为4,设,,则解得所以椭圆的标准方程为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)30.【解题分析】(1)设出等差数列的公差,由已知列式求得公差,进一步求出首项,代入等差数列的通项公式求数列的通项公式;(2)利用等差数列求和公式求和,再利用二次函数求得最值即可.【题目详解】解:(1)由题意得,数列公差为,则解得:,∴(2)由(1)可得,∴∵,∴当或时,取得最大值【题目点拨】本题考查利用基本量求解等差数列的通项公式,以及前n项和及最值,属基础题18、(1)(2)(3)或【解题分析】(1)由已知求得,再由等轴双曲线的性质可求得则,由此可求得双曲线的方程;(2)由已知求得抛物线的焦点为,得出椭圆的,再根据椭圆的离心率求得,由此可得出椭圆的方程;(3)设抛物线的标准方程为:或,代入点求解即可.【小问1详解】解:对于直线,令,得,所以,则,所以,所以中心在原点,实轴在轴上,一个焦点在直线上的等轴双曲线的方程为;【小问2详解】解:由得抛物线的焦点为,所以对于椭圆,,又椭圆的离心率为,所以,解得,所以椭圆的方程;【小问3详解】解:因为点在第三象限,所以满足条件的抛物线的标准方程可以是:或,代入点得或,解得或,所以经过点的抛物线的方程为或19、(1)证明见解析;(2);【解题分析】(1)证明,利用面面垂直的性质可得出平面,再利用面面垂直的判定定理可证得平面平面;(2)连接,以点为坐标原点,、、所在直线分别为轴建立空间直角坐标系,设,根据可得出,求出的值,利用空间向量法可求得直线与所成角的余弦值.【题目详解】(1)为的中点,且,则,又因为,则,故四边形为平行四边形,因为,故四边形为矩形,所以,平面平面,平面平面,平面,平面,因为平面,因此,平面平面;(2)连接,由(1)可知,平面,,为的中点,则,以点为坐标原点,所在直线分别为轴建立空间直角坐标系,则、、、、,设,,因为,则,解得,,,则.因此,直线与所成角的余弦值为.20、(1)(2)【解题分析】(1)根据降幂公式化简的解析式,再用整体代入法即可求出函数的单调递减区间;(2)由正弦定理边化角,从而可求得,根据锐角三角形可得从而可求出答案【题目详解】解:(1),由得所以的单调递减区间为;(2)由正弦定理得,∵∴,即,,得,或,解得,或(舍),∵为锐角三角形,∴解得∴∴的取值范围为【题目点拨】本题主要考查三角函数的化简与性质,考查正弦定理的作用,属于基础题21、(1)证明见解析(2)【解题分析】(1)分别证明∥平面,∥平面,最后利用面面平行的判定定理证明平面∥平面即可;(2)由∥得即为直线与所成角,在直角△即可求解.【小问1详解】∵∥且EN平面MNE,BC平面MNE,∴BC∥平面MNE,又∵∥且EM平面MNE,平面MNE,∴∥平面MNE又∵,∴平面∥平面,【小问2详解】由(1)得∥,∴为直线MN与所成的角,设正方体的棱长为a,在△中,,,∴.22、(1)证明见解析(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 17913-2024粮油储藏磷化氢环流熏蒸装备
- GB/T 14227-2024城市轨道交通车站站台声学要求和测量方法
- 脚手架施工服务承包合同
- 外卖订单配送承包合同
- 2024广告代理权责协议
- 专业室内设计分包合同
- 公司股东合作协议书范本常用版
- 家政服务用工合同
- 猎头服务提供合同范本
- 2024年民间借贷及还款协议书
- 浙江省杭州市上城区采荷中学2023-2024学年七年级上学期期中数学试卷
- 危急值的考试题及答案
- 2.3 河流 第3课时 课件-2024-2025学年八年级地理上学期人教版
- 监理协议合同模板
- 2023年西藏自治区日喀则市拉孜税务局公务员考试《行政职业能力测验》历年真题及详解
- 2024内蒙古农牧业融资担保限公司公开招聘28人高频难、易错点500题模拟试题附带答案详解
- 6.3+价值的创造和实现课件-2024-2025学年高中政治统编版必修四哲学与文化
- 内斜视课件教学课件
- 湖南省长沙市明德天心中学2024-2025学年七年级上学期9月月考数学试题(无答案)
- 课件:《中华民族共同体概论》第十五讲:新时代与中华民族共同体建设
- 自然拼读法-图文.课件
评论
0/150
提交评论