版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省新泰市第二中学高二上数学期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数在上单调递减,则实数的取值范围是()A. B.C. D.2.已知四棱锥,底面为平行四边形,分别为,上的点,,设,则向量用为基底表示为()A. B.C. D.3.如图,矩形BDEF所在平面与正方形ABCD所在平面互相垂直,,,点P在线段EF上.给出下列命题:①存在点P,使得直线平面ACF;②存在点P,使得直线平面ACF;③直线DP与平面ABCD所成角的正弦值的取值范围是;④三棱锥的外接球被平面ACF所截得的截面面积是.其中所有真命题的序号()A.①③ B.①④C.①②④ D.①③④4.已知圆柱的表面积为定值,当圆柱的容积最大时,圆柱的高的值为()A.1 B.C. D.25.记等差数列的前n项和为,若,,则等于()A.5 B.31C.38 D.416.如图,空间四边形OABC中,,,,点M在上,且满足,点N为BC的中点,则()A. B.C. D.7.在等比数列中,,,则等于()A. B.5C. D.98.定义在R上的函数与函数在上具有相同的单调性,则k的取值范围是()A. B.C. D.9.已知a,b为正数,,则下列不等式一定成立的是()A. B.C. D.10.直线的倾斜角的大小为A. B.C. D.11.2020年12月4日,嫦娥五号探测器在月球表面第一次动态展示国旗.1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点.有人发现,第三颗小星的姿态与大星相近.为便于研究,如图,以大星的中心点为原点,建立直角坐标系,,,,分别是大星中心点与四颗小星中心点的联结线,,则第三颗小星的一条边AB所在直线的倾斜角约为()A. B.C. D.12.已知等差数列{an}的前n项和为Sn,且S7=28,则a4=()A.4 B.7C.8 D.14二、填空题:本题共4小题,每小题5分,共20分。13.如图的形状出现在南宋数学家杨辉所著的《算法九章·商功》中,后人称之为“三角垛”.已知某“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球……设各层(从上往下)球数构成一个数列,则___________,___________.14.经过两点的直线的倾斜角为,则___________.15.函数的图象在点处的切线方程为___________.16.已知圆,则圆心坐标为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的上、下顶点分别为A,B,离心率为,椭圆C上的点与其右焦点F的最短距离为.(1)求椭圆C的标准方程;(2)若直线与椭圆C交于P,Q两点,直线PA与QB的斜率分别为,,且,那么直线l是否过定点,若过定点,求出该定点坐标;否则,请说明理由.18.(12分)如图所示,平面ABCD,四边形AEFB为矩形,,,(1)求证:平面ADE;(2)求平面CDF与平面AEFB所成锐二面角的余弦值19.(12分)已知点和直线.(1)求以为圆心,且与直线相切的圆的方程;(2)过直线上一点作圆的切线,其中为切点,求四边形PAMB的面积的最小值.20.(12分)已知等差数列{an}的前n项和为Sn,数列{bn}满足:点(n,bn)在曲线y=上,a1=b4,___,数列{}的前n项和为Tn从①S4=20,②S3=2a3,③3a3﹣a5=b2这三个条件中任选一个,补充到上面问题的横线上并作答(1)求数列{an},{bn}的通项公式;(2)是否存在正整数k,使得Tk>,且bk>?若存在,求出满足题意的k值;若不存在,请说明理由21.(12分)如图,在四棱锥中,已知平面ABCD,为等边三角形,,,.(1)证明:平面PAD;(2)若M是BP的中点,求二面角的余弦值.22.(10分)在①;②;③;这三个条件中任选一个,补充在下面的问题中,然后解答补充完整的题.注:若选择多个条件分别解答,则按第一个解答计分.已知,且(只需填序号).(1)求的值;(2)求展开式中的奇数次幂的项的系数之和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分析可知,对任意的恒成立,由参变量分离法可得出,求出在时的取值范围,即可得出实数的取值范围.【题目详解】因为,则,由题意可知对任意的恒成立,则对任意的恒成立,当时,,.故选:B.2、D【解题分析】通过寻找封闭的三角形,将相关向量一步步用基底表示即可.【题目详解】.故选:D3、D【解题分析】当点P是线段EF中点时判断①;假定存在点P,使得直线平面ACF,推理导出矛盾判断②;利用线面角的定义转化列式计算判断③;求出外接圆面积判断④作答.【题目详解】取EF中点G,连DG,令,连FO,如图,在正方形ABCD中,O为BD中点,而BDEF是矩形,则且,即四边形DGFO是平行四边形,即有,而平面ACF,平面ACF,于是得平面ACF,当点P与G重合时,直线平面ACF,①正确;假定存在点P,使得直线平面ACF,而平面ACF,则,又,从而有,在中,,DG是直角边EF上中线,显然在线段EF上不存在点与D连线垂直于DG,因此,假设是错的,即②不正确;因平面平面,平面平面,则线段EF上的动点P在平面上的射影在直线BD上,于是得是直线DP与平面ABCD所成角的,在矩形BDEF中,当P与E不重合时,,,而,则,当P与E重合时,,,因此,,③正确;因平面平面,平面平面,,平面,则平面,,在中,,显然有,,由正弦定理得外接圆直径,,三棱锥的外接球被平面ACF所截得的截面是的外接圆,其面积为,④正确,所以所给命题中正确命题的序号是①③④.故选:D【题目点拨】结论点睛:两个平面互相垂直,则一个平面内任意一点在另一个平面上的射影都在这两个平面的交线上.4、B【解题分析】设圆柱的底面半径为,则圆柱底,圆柱侧,则可得,则圆柱的体积为,利用导数求出最大值,确定值.【题目详解】设圆柱的底面半径为,则圆柱底,圆柱侧,∴,∴,则圆柱的体积,∴,由得,由得,∴当时,取极大值,也是最大值,即故选:B【题目点拨】本题主要考查了圆柱表面积和体积的计算,考查了导数的实际应用,考查了学生的应用意识.5、A【解题分析】设等差数列的公差为d,首先根据题意得到,再解方程组即可得到答案.【题目详解】解:设等差数列的公差为d,由题知:,解得.故选:A.6、B【解题分析】由空间向量的线性运算求解【题目详解】由题意,又,,,∴,故选:B7、D【解题分析】由等比数列的项求公比,进而求即可.【题目详解】由题设,,∴故选:D8、B【解题分析】判定函数单调性,再利用导数结合函数在的单调性列式计算作答.【题目详解】由函数得:,当且仅当时取“=”,则在R上单调递减,于是得函数在上单调递减,即,,即,而在上单调递减,当时,,则,所以k的取值范围是.故选:B9、A【解题分析】构造新函数,以函数单调性把不等式转化为整式不等式即可解决.【题目详解】不等式可化为:令,则则函数为单调增函数.由可得故选:A10、A【解题分析】考点:直线的倾斜角专题:计算题分析:因为直线的斜率是倾斜角的正切值,所以欲求直线的倾斜角,只需求出直线的斜率即可,把直线化为斜截式,可得斜率,问题得解解答:解:∵x-y+1=0可化为y=x+,∴斜率k=设倾斜角为θ,则tanθ=k=,θ∈[0,π)∴θ=故选A点评:本题主要考查了直线的倾斜角与斜率之间的关系,属于直线方程的基础题型,需要学生对基础知识熟练掌握11、C【解题分析】由五角星的内角为,可知,又平分第三颗小星的一个角,过作轴平行线,则,即可求出直线的倾斜角.【题目详解】都为五角星的中心点,平分第三颗小星的一个角,又五角星的内角为,可知,过作轴平行线,则,所以直线的倾斜角为,故选:C【题目点拨】关键点点睛:本题考查直线倾斜角,解题的关键是通过做辅助线找到直线的倾斜角,通过几何关系求出倾斜角,考查学生的数形结合思想,属于基础题.12、A【解题分析】由等差数列的性质可知,再代入等差数列的前项和公式求解.【题目详解】数列{an}是等差数列,,那么,所以.故选:A.【题目点拨】本题考查等差数列的性质和前项和,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解题分析】根据,,得到,利用累加法和等差数列求和公式求出,再利用裂项抵消法进行求和.【题目详解】因为,,,,,以上个式子累加,得,则;因为,所以.故答案为:,.14、2【解题分析】由两点间的斜率公式及直线斜率的定义即可求解.【题目详解】解:因为过两点的直线的倾斜角为,所以,解得,故答案为:2.15、【解题分析】求导得到,计算,根据点斜式可得到切线方程.【题目详解】因此,则,故,又点在函数的图象上,故切线方程为:,即.故答案为:16、【解题分析】将圆的一般方程配方程标准方程即可.【题目详解】圆,即,它的圆心坐标是.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)恒过点【解题分析】(1)设为椭圆上的点,根据椭圆的性质得到,再根据的取值范围,得到,再根据离心率求出、,最后根据,求出,即可得解;(2)设、,表示出、,联立直线与椭圆方程,消元列出韦达定理,由,即可得到,再根据,即可得到,从而得到,再将、代入计算可得;【小问1详解】解:设为椭圆上的点,为椭圆的右焦点,所以,因为,所以,又,所以、,因为,所以,所以椭圆方程为;【小问2详解】解:设、,依题意可得、,所以、,联立得,则即,所以、,因为,所以,即,由得,即,所以,即,,整理得,所以,即,即,解得或,当时直线过点,故舍去,所以,则直线恒过点;18、(1)见解析(2)【解题分析】(1)根据,,从而证明平面平面ADE,从而平面ADE。(2)以A为坐标原点,建立空间直角坐标系,写出点的空间坐标,根据向量法求解即可。【题目详解】(1)∵四边形ABEF为矩形又平面ADE,AE平面ADE平面ADE又,同理可得:平面ADE又,BF,BC平面BCF∴平面平面ADE又CF平面BCF平面ADE(2)如图,以A为坐标原点,建立空间直角坐标系,则,,,,设是平面CDF的一个法向量,则即令,解得又是平面AEFB的一个法向量,∴平面CDF与平面AEFB所成锐二面角的余弦值为.【题目点拨】此题考查立体几何线面平行证明和二面角求法,线面平行可先证面面平行得到,属于简单题目。19、(1)(2)【解题分析】(1)利用到直线的距离求得半径,由此求得圆的方程.(2)结合到直线的距离来求得四边形面积的最小值.【小问1详解】圆的半径,圆的方程为.【小问2详解】由四边形的面积知,当时,面积最小.此时...20、(1)条件选择见解析;an=2n,bn=25﹣n.(2)不存在,理由见解析.【解题分析】(1)把点(n,bn)代入曲线y=可得到bn=25﹣n,进而求出a1,设等差数列{an}的公差为d,选①S4=20,利用等差数列的前n项和公式可求出d,从而得到an;若选②S3=2a3,利用等差数列的前n项和公式可求出d,从而得到an;若选③3a3﹣a5=b2,利用等差数列的通项公式公式可求出d,从而得到an;(2)由(1)可知Sn==n(1+n),=,再利用裂项相消法求出Tn=1﹣,不等式无解,即不存在正整数k,使得Tk>,且bk>【小问1详解】解:∵点(n,bn)在曲线y=上,∴=25﹣n,∴a1=b4=25﹣4=2,设等差数列{an}的公差为d,若选①S4=20,则S4==20,解得d=2,∴an=2+2(n﹣1)=2n;若选②S3=2a3,则S3=a1+a2+a3=2a3,∴a1+a2=a3,∴2+2+d=2+2d,解得d=2,∴an=2+2(n﹣1)=2n;若选③3a3﹣a5=b2,则3(a1+2d)﹣(a1+4d)=25﹣2=8,∴2a1+2d=8,即2×2+2d=8,∴d=2,∴an=2+2(n﹣1)=2n;【小问2详解】解:由(1)可知Sn===n(1+n),∴==,∴Tn=(1﹣)+()+……+()=1﹣,假设存在正整数k,使得Tk>,且bk>,∴,即,此不等式无解,∴不存在正整数k,使得Tk>,且bk>21、(1)证明见解析(2)【解题分析】(1)根据条件先证明,再根据线面平行的判定定理证明平面PAD;(2)确定坐标原点,建立空间直角坐标系,从而求出相关的点的坐标,进而求得相关向量的坐标,再求相关平面的法向量,根据向量的夹角公式求得结果.【小问1详解】证明:由已知为等边三角形,且,所以又因为,,在中,,又,所以在底面中,,又平面,平面,所以平面.【小问2详解】解:取的中点,连接,则,由(1)知,所以,分别以,,为,,轴建立空间直角坐标系.则,,,所以,由已知可知平面ABCD的一个法向量设平面的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- pcr技术课件简短
- 教案对数函数及其性质
- 玉溪师范学院《通信原理》2022-2023学年第一学期期末试卷
- 玉溪师范学院《数学课件设计与制作》2021-2022学年第一学期期末试卷
- 五下语文第1课教学课件教学课件教学
- 儿童画课件教学
- 2024年苯甲醇项目成效分析报告
- 《说说委屈的事》心理健康教学设计
- 仓库主管协议书
- 采购谈判记录 合同条款范本
- 非外资独资或外资控股企业书面声明
- 2023上海外国语大学三亚附属中学第一次招聘19人笔试备考题库及答案解析
- 2022年春期2064国开电大专科《管理学基础》纸质形成性考核册答案
- 水稻收获技术
- 机械加工初步报价自动计算(含各种工时费)
- 《1.3 数据科学与大数据》课件(人教中图版)
- 中医儿科学 泄泻
- YY/T 0471.2-2004接触性创面敷料试验方法 第2部分:透气膜敷料水蒸气透过率
- GB/T 18690.3-2002农业灌溉设备过滤器自动清洗网式过滤器
- PythonNumPy教学讲解课件
- 正高级会计师答辩面试资料
评论
0/150
提交评论