版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省各地2024学年高二上数学期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数,若为奇函数,则曲线在点处的切线方程为()A. B.C. D.2.命题“若,都是偶数,则也是偶数”的逆否命题是A.若是偶数,则与不都是偶数B.若是偶数,则与都不是偶数C.若不是偶数,则与不都是偶数D.若不是偶数,则与都不是偶数3.复数的共轭复数的虚部为()A. B.C. D.4.如图是正方体的平面展开图,在这个正方体中①与平行;②与是异面直线;③与成60°角;④与是异面直线以上四个结论中,正确结论的序号是A.①②③ B.②④C.③④ D.②③④5.甲、乙两名射击运动员进行比赛,甲的中靶概率为0.8,乙的中靶概率为0.9,则两人各射击一次恰有一人中靶的概率为()A.0.26 B.0.28C.0.72 D.0.986.已知实数、满足,则的最大值为()A. B.C. D.7.球O为三棱锥的外接球,和都是边长为的正三角形,平面PBC平面ABC,则球的表面积为()A. B.C. D.8.已知直线与平行,则的值为()A. B.C. D.9.已知F是双曲线的右焦点,过F且垂直于x轴的直线交E于A,B两点,若E的渐近线上恰好存在四个点,,,,使得,则E的离心率的取值范围是()A. B.C. D.10.在区间内随机取一个数,则方程表示焦点在轴上的椭圆的概率是A. B.C. D.11.已知抛物线的焦点为,为抛物线上第一象限的点,若,则直线的倾斜角为()A. B.C. D.12.如图所示,为了测量A,B处岛屿的距离,小张在D处观测,测得A,B分别在D处的北偏西、北偏东方向,再往正东方向行驶10海里至C处,观测B在C处的正北方向,A在C处的北偏西方向,则A,B两处岛屿间的距离为()海里.A. B.C. D.10二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的弦AB的中点为M,O为坐标原点,则直线AB的斜率与直线OM的斜率之积等于_________14.设数列满足,则an=________15.已知直线与垂直,则m的值为______16.若平面法向量,直线的方向向量为,则与所成角的大小为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前n项和为,且(1)求证:数列为等比数列;(2)记,求数列的前n项和为18.(12分)篮天技校为了了解车床班学生的操作能力,设计了一个考查方案;每个考生从道备选题中一次性随机抽取道题,按照题目要求独立完成零件加工,规定:至少正确加工完成其中个零件方可通过.道备选题中,考生甲有个零件能正确加工完成,个零件不能完成;考生乙每个零件正确完成的概率都是,且每个零件正确加工完成与否互不影响(1)分别求甲、乙两位考生正确加工完成零件数的概率分布列(列出分布列表);(2)试从甲、乙两位考生正确加工完成零件数的数学期望及两人通过考查的概率分析比较两位考生的操作能力19.(12分)已知直线经过椭圆的右焦点,且椭圆C的离心率为(1)求椭圆C的标准方程;(2)以椭圆的短轴为直径作圆,若点M是第一象限内圆周上一点,过点M作圆的切线交椭圆C于P,Q两点,椭圆C的右焦点为,试判断的周长是否为定值.若是,求出该定值20.(12分)数列的前n项和为,(1)求数列的通项公式;(2)令,求数列的前n项和21.(12分)在①,;②,,③,这三个条件中任选一个,补充在下面问题中并解决问题问题:设等差数列的前项和为,________________,若,判断是否存在最大值,若存在,求出取最大值时的值;若不存在,说明理由注:如果选择多个条件分别解答.按第一个解答记分22.(10分)已知双曲线与椭圆有公共焦点,且它的一条渐近线方程为.(1)求椭圆的焦点坐标;(2)求双曲线的标准方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】利用函数的奇偶性求出,求出函数的导数,根据导数的几何意义,利用点斜式即可求出结果【题目详解】函数的定义域为,若为奇函数,则则,即,所以,所以函数,可得;所以曲线在点处的切线的斜率为,则曲线在点处的切线方程为,即故选:C2、C【解题分析】命题的逆否命题是将条件和结论对换后分别否定,因此“若都是偶数,则也是偶数”的逆否命题是若不是偶数,则与不都是偶数考点:四种命题3、B【解题分析】先根据复数除法与加法运算求解得,再求共轭复数及其虚部.【题目详解】解:,所以其共轭复数为,其虚部为故选:B4、C【解题分析】根据平面展开图可得原正方体,根据各点的分布逐项判断可得正确的选项.【题目详解】由平面展开图可得原正方体如图所示:由图可得:为异面直线,与不是异面直线,是异面直线,故①②错误,④正确.连接,则为等边三角形,而,故或其补角为与所成的角,因为,故与所成的角为,故③正确.综上,正确命题的序号为:③④.故选:C.【题目点拨】本题考查正方体的平面展开图,注意展开图中的点与正方体中的顶点的对应关系,本题属于容易题.5、A【解题分析】依据独立事件同时发生的概率即可求得甲乙两人各射击一次恰有一人中靶的概率.【题目详解】记甲中靶为事件A,乙中靶为事件B,则甲乙两人各射击一次恰有一人中靶,包含甲中乙不中和甲不中乙中两种情况,则甲乙两人各射击一次恰有一人中靶的概率为故选:A6、A【解题分析】作出可行域,利用代数式的几何意义,利用数形结合可求得的最大值.【题目详解】作出不等式组所表示的可行域如下图所示:联立可得,即点,代数式的几何意义是连接可行域内一点与定点连线的斜率,由图可知,当点在可行域内运动时,直线的倾斜角为锐角,当点与点重合时,直线的倾斜角最大,此时取最大值,即.故选:A.7、B【解题分析】取中点为T,以及的外心为,的外心为,依据平面平面可知为正方形,然后计算外接球半径,最后根据球表面积公式计算.【题目详解】设中点为T,的外心为,的外心为,如图由和均为边长为的正三角形则和的外接圆半径为,又因为平面PBC平面ABC,所以平面,可知且,过分别作平面、平面的垂线相交于点即为三棱锥的外接球的球心,且四边形是边长为的正方形,所以外接球半径,则球的表面积为,故选:B8、C【解题分析】由两直线平行可得,即可求出答案.【题目详解】直线与平行故选:C.9、D【解题分析】由题意以AB为直径的圆M与双曲线E的渐近线有四个不同的交点,则必有,又当圆M经过原点时此时以AB为直径的圆M上与双曲线E的渐近线有三个不同的交点,不满足,从而得出答案.【题目详解】由题意,由得,双曲线的渐近线方程为所以,由,可知,,,在以AB为直径的圆M上,圆的半径为即以AB为直径的圆M与双曲线E的渐近线有四个不同的交点当圆M与渐近线相切时,圆心到渐近线的距离,则必有,即,则双曲线E的离心率,所以又当圆M经过原点时,,解得E的离心率为,此时以AB为直径圆M与双曲线E的渐近线有三个不同的交点,不满足条件.所以E的离心率的取值范围是.故选:D10、D【解题分析】若方程表示焦点在轴上的椭圆,则,解得,,故方程表示焦点在轴上的椭圆的概率是,故选D.11、C【解题分析】设点,其中,,根据抛物线的定义求得点的坐标,即可求得直线的斜率,即可得解.【题目详解】设点,其中,,则,可得,则,所以点,故,因此,直线的倾斜角为.故选:C.12、C【解题分析】分别在和中,求得的长度,再在中,利用余弦定理,即可求解.【题目详解】如图所示,可得,所以,在中,可得,在直角中,因为,所以,在中,由余弦定理可得,所以.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】根据点是弦的中点,为坐标原点,利用点差法求解.【题目详解】设,且,则,(1),(2)得:,,.又,,.故答案为:14、【解题分析】先由题意得时,,再作差得,验证时也满足【题目详解】①当时,;当时,②①②得,当也成立.即故答案为:15、0或-9##-9或0【解题分析】根据给定条件利用两直线互相垂直的性质列式计算即得.【题目详解】因直线与垂直,则有,解得或,所以m的值为0或-9.故答案为:0或-916、##【解题分析】设直线与平面所成角为,则,直接利用直线与平面所成的角的向量计算公式,即可求出直线与平面所成的角【题目详解】解:已知直线的方向向量为,平面的法向量为,设直线与平面所成角为,则,,,所以直线与平面所成角为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解题分析】(1)由已知得,当时,两式作差整理得,根据等比数列的定义可得证;(2)由(1)求得,,再运用错位相减法可求得答案.【小问1详解】证明:因为,……①,所以当时,,当时……②,则①-②可得,所以,因为,所以数列是以2为首项,2为公比的等比数列【小问2详解】解:由(1)知,即,因为所以,则……①,①得……②,①-②得,所以.18、(1)分布列见解析(2)甲的试验操作能力较强,理由见解析【解题分析】(1)设考生甲、乙正确加工完成零件的个数分别为、,则的可能取值有、、,的可能取值有、、、,且,计算出两个随机变量在不同取值下的概率,可得出这两个随机变量的概率分布列;(2)计算出、、、的值,比较、的大小,以及、的大小,由此可得出结论.【小问1详解】解:设考生甲、乙正确加工完成零件的个数分别为、,则的可能取值有、、,的可能取值有、、、,且,,,,所以,考生甲正确加工完成零件数的概率分布列如下表所示:,,,,所以,考生乙正确加工完成零件数的概率分布列如下表所示:【小问2详解】解:,,,,所以,,从做对题的数学期望分析,两人水平相当;从通过考查的概率分析,甲通过的可能性大,因此可以判断甲的试验操作能力较强.19、(1)(2)周长是定值,且定值为4【解题分析】(1)首先求出直线与轴的交点,即可求出,再根据离心率求出,最后根据求出,即可得解;(2):设直线的方程为、、,联立直线与椭圆方程,消元列出韦达定理,即可表示出弦的长,再根据直线与圆相切,则圆心到直线的距离等于半径,即可得到,再求出、,最后根据计算即可得解;【小问1详解】解:因为经过椭圆的右焦点,令,则,所以椭圆的右焦点为,可得:,又,可得:,由,所以,∴椭圆的标准方程为;【小问2详解】解:设直线的方程为,由得:,所以,设,,则:,所以.因为直线与圆相切,所以,即,所以,因为,又,所以,同理.所以,即的周长是定值,且定值为420、(1);(2).【解题分析】(1)根据给定条件结合“当时,”计算作答.(2)由(1)求出,利用裂项相消法计算得解.【小问1详解】数列的前n项和为,,当时,,当时,,满足上式,则,所以数列的通项公式是【小问2详解】由(1)知,,所以,所以数列的前n项和21、答案不唯一,具体见解析【解题分析】选①:易得,法一:令求n,即可为何值时取最大值;法二:写出,利用等差数列前n项和的函数性质判断为何值时有最大值;选②:由数列前n项和及等差数列下标和的性质易得、即可确定有最大值时值;选③:由等差数列前n项和公式易得、即可确定有最大值时值;【题目详解】选①:设数列的公差为,,,解得,即,法一:当时,有,得,∴当时,;,;时,,∴或时,取最大值法二:,对称轴,∴或时,取最大值选②:由,得,由等差中项的性质有,即,由,得,∴,故,∴当时,,时,,故时,取最大值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 按揭购房贷款合同范本
- 展览宣传活动合同
- 企业资产抵押贷款合同
- 2024购车协议书合同范本
- 批量购房合同协议
- 2024企业员工劳动合同样本
- 企业资产买卖合同模板
- 房屋转让协议标准合同范本
- 2024建设施工合同有些分类
- 2024公司股权转让及后续合伙经营合同
- 公司组织架构图模板课件
- 辽宁省葫芦岛市各县区乡镇行政村村庄村名居民村民委员会明细
- 植物种子的传播方式课件
- 电缆敷设施工方案及安全措施
- 百合干(食品安全企业标准)
- 肺血栓栓塞症临床路径(县级医院版)
- 国开成本会计第10章综合练习试题及答案
- 《西游记》-三打白骨精(剧本台词)精选
- T∕CSCS 012-2021 多高层建筑全螺栓连接装配式钢结构技术标准-(高清版)
- 充电站项目合作方案-高新
- 急诊科临床诊疗指南-技术操作规范更新版
评论
0/150
提交评论