版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024学年上海市上海师范大学第二附属中学高二上数学期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线的一个方向向量为,则它的斜率为()A. B.C. D.2.已知直线l和抛物线交于A,B两点,O为坐标原点,且,交AB于点D,点D的坐标为,则p的值为()A. B.1C. D.23.设A=37+·35+·33+·3,B=·36+·34+·32+1,则A-B的值为()A.128 B.129C.47 D.04.如图所示,为了测量A,B处岛屿的距离,小张在D处观测,测得A,B分别在D处的北偏西、北偏东方向,再往正东方向行驶10海里至C处,观测B在C处的正北方向,A在C处的北偏西方向,则A,B两处岛屿间的距离为()海里.A. B.C. D.105.等比数列中,,,则()A. B.C. D.6.执行如图所示的程序框图,若输出的,则输人的()A. B.或C. D.或7.已知直线与平行,则系数()A. B.C. D.8.已知数列是等比数列,,数列是等差数列,,则的值是()A. B.C. D.9.双曲线与椭圆的焦点相同,则等于()A.1 B.C.1或 D.210.定义域为的函数满足,且的导函数,则满足的的集合为A. B.C. D.11.“椭圆的离心率为”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件12.已知两条异面直线的方向向量分别是,,则这两条异面直线所成的角满足()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设,若,则S=________.14.圆锥的轴截面是边长为2的等边三角形,为底面中心,为的中点,动点在圆锥底面内(包括圆周).若,则点形成的轨迹的长度为______15.数学中有许多形状优美、寓意美好的曲线,曲线就是其中之一(如图),给出下列三个结论:①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过;③曲线C所围成的“心形”区域的面积小于3;其中,所有正确结论的序号是________16.二项式的展开式中,项的系数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在△ABC中,角A,B,C的对边分别是,已知(1)求角B的大小;(2)求三角形ABC的面积.18.(12分)如图1,在△MBC中,,A,D分别为棱BM,MC的中点,将△MAD沿AD折起到△PAD的位置,使,如图2,连结PB,PC,BD(1)求证:平面PAD⊥平面ABCD;(2)若E为PC中点,求直线DE与平面PBD所成角的正弦值19.(12分)如图,在空间四边形中,分别是的中点,分别是上的点,满足.(1)求证:四点共面;(2)设与交于点,求证:三点共线.20.(12分)已知等差数列}的公差为整数,为其前n项和,,(1)求{}的通项公式:(2)设,数列的前n项和为,求21.(12分)为弘扬中华优秀传统文化,鼓励全民阅读经典书籍,某市举行阅读月活动,现统计某街道约10000人在该活动月每人每日平均阅读时间(分钟)的频率分布直方图如图:(1)求x的值;(2)从该街道任选1人,则估计这个人的每日平均阅读时间超过60分钟的概率.22.(10分)等差数列{an}的前n项和记为Sn,且.(1)求数列{an}的通项公式an(2)记数列的前n项和为Tn,若,求n的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】根据的方向向量求得斜率.【题目详解】且是直线的方向向量,.故选:A2、B【解题分析】由垂直关系得出直线l方程,联立直线和抛物线方程,利用韦达定理以及数量积公式得出p的值.【题目详解】,,即联立直线和抛物线方程得设,则解得故选:B3、A【解题分析】先化简A-B,发现其结果为二项式展开式,然后计算即可【题目详解】A-B=37-·36+·35-·34+·33-·32+·3-1=故选A.【题目点拨】本题主要考查了二项式定理的运用,关键是通过化简能够发现其结果在形式上满足二项式展开式,然后计算出结果,属于基础题4、C【解题分析】分别在和中,求得的长度,再在中,利用余弦定理,即可求解.【题目详解】如图所示,可得,所以,在中,可得,在直角中,因为,所以,在中,由余弦定理可得,所以.故选:C.5、D【解题分析】设公比为,依题意得到方程,即可求出,再根据等比数列通项公式计算可得;【题目详解】解:设公比为,因为,,所以,即,解得,所以;故选:D6、A【解题分析】根据题意可知该程序框图显示的算法函数为,分和两种情况讨论即可得解.【题目详解】解:该程序框图显示得算法函数为,由,当时,,方程无解;当时,,解得,综上,若输出的,则输入的.故选:A.7、B【解题分析】由直线的平行关系可得,解之可得【题目详解】解:直线与直线平行,,解得故选:8、B【解题分析】根据等差数列和等比数列下标和的性质即可求解.【题目详解】为等比数列,,,,;为等差数列,,,,,∴.故选:B.9、A【解题分析】根据双曲线方程形式确定焦点位置,再根据半焦距关系列式求参数.【题目详解】因为双曲线的焦点在轴上,所以椭圆焦点在轴上,依题意得解得.故选:A10、B【解题分析】利用2f(x)<x+1构造函数g(x)=2f(x)-x-1,进而可得g′(x)=2f′(x)-1>0.得出g(x)的单调性结合g(1)=0即可解出【题目详解】令g(x)=2f(x)-x-1.因为f′(x)>,所以g′(x)=2f′(x)-1>0.所以g(x)单调增函数因为f(1)=1,所以g(1)=2f(1)-1-1=0.所以当x<1时,g(x)<0,即2f(x)<x+1.故选B.【题目点拨】本题主要考察导数的运算以及构造函数利用其单调性解不等式.属于中档题11、C【解题分析】讨论椭圆焦点的位置,根据离心率分别求出参数m,由充分必要性的定义判断条件间的充分、必要关系.【题目详解】当椭圆的焦点在轴上时,,得;当椭圆的焦点在轴上时,,得故“椭圆的离心率为”是“”的必要不充分条件故选:C.12、D【解题分析】利用向量夹角余弦公式直接求解【题目详解】解:两条异面直线的方向向量分别是,,这两条异面直线所成的角满足:,,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、1007【解题分析】可证f(x)+f(1﹣x)=1,由倒序相加法可得所求为1007对的组合,即1007个1,可得答案【题目详解】解:∵函数f(x),∴f(x)+f(1﹣x)1故可得S=f()+f()…+f()=1007×1=1007,故答案为:1007点睛】本题考查倒序相加法求和,推断出f(x)+f(1﹣x)=1是解题的关键.14、【解题分析】建立空间直角坐标系设,,,,于是,,因为,所以,从而,,此为点形成的轨迹方程,其在底面圆盘内的长度为15、①②【解题分析】先根据图像的对称性找出整点,再判断是否还有其他的整点在曲线上;找出曲线上离原点距离最大的点的区域,再由基本不等式得到最大值不超过;在心形区域内找到一个内接多边形,该多边形的面积等于3,从而判断出“心形”区域的面积大于3.【题目详解】①:由于曲线,当时,;当时,;当时,;由于图形的对称性可知,没有其他的整点在曲线上,故曲线恰好经过6个整点:,,,,,,所以①正确;②:由图知,到原点距离的最大值是在时,由基本不等式,当时,,所以即,所以②正确;③:由①知长方形CDFE的面积为2,三角形BCE的面积为1,所以曲线C所围成的“心形”区域的面积大于3,故③错误;故答案为:①②.【题目点拨】找准图形的关键信息,比如对称性,整点,内接多边形是解决本题的关键.16、80【解题分析】利用二项式的通项公式进行求解即可.【题目详解】二项式的通项公式为:,令,所以项的系数为,故答案为:80三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)B=300(2)【解题分析】分析:(1)由同角三角函数关系先求,由正弦定理可求值,从而可求的值;(2)先求得的值,代入三角函数面积公式即可得结果.详解:(1)由正弦定理又∴B为锐角sinA=,由正弦定理B=300(2),∴.点睛:以三角形和为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.18、(1)证明见解析;(2).【解题分析】(1)推导出,,利用线面垂直的判定定理可得平面,再利用面面垂直的判定定理即可证明;(2)以A为坐标原点,建立如图空间直角坐标系,利用向量法即可求出直线DE与平面所成角的正弦值.【小问1详解】由题意知,因为点A、D分别为MB、MC中点,所以,又,所以,所以.因为,所以,又,所以平面,又平面,所以平面平面;【小问2详解】因为,,,所以两两垂直,以A为坐标原点,建立如图空间直角坐标系,,则,设平面的一个法向量为,则,令,得,所以,设直线DE与平面所成角为,则,所以直线DE与平面所成角的正弦值为.19、(1)证明见解析(2)证明见解析【解题分析】【小问1详解】连接AC,分别是的中点,.在中,,所以四点共面.【小问2详解】,所以,又平面平面,同理平面,为平面与平面的一个公共点.又平面平面,即三点共线.20、(1)(2)【解题分析】(1)根据题意利用等差数列的性质列出方程,即可解得答案;(2)根据(1)的结果,求出的表达式,利用裂项求和的方法求得答案.小问1详解】设等差数列{}的公差为d,则,整理可得:,∵d是整数,解得,从而,所以数列{}的通项公式为:;【小问2详解】由(1)知,,所以21、(1)(2)0.7【解题分析】(1)利用概率和为1计算可得的值;(2)求频率分布直方图中每人每日平均阅读时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新建农商银行2022年“科技助力金融创新”活动方案
- 抗菌药物分级管理在临床中的应用
- 中医药处方点评制度建设
- 剪纸蜻蜓课件教学课件
- 统考版2024高考生物二轮复习预测押题卷三含解析
- 2024-2025学年高中语文第七单元第15课我与地坛节选提升练习含解析部编版必修上册
- 2024-2025学年九年级物理上册第四章探究电流单元总结含解析新版教科版
- 2024-2025学年高中英语Unit3LifeinthefutureLearningaboutlanguage课时作业1新人教版必修5
- 2024-2025学年新教材高中政治第二单元家庭与婚姻第五课第二框薪尽火传有继承课后习题含解析新人教版选修2
- 文化交流活动假期学习方案
- 世界急救日常见的急救基本知识科普讲座课件
- 乡村振兴民宿产业项目可行性研究报告
- 【真题】2024年常州市中考物理试卷(含答案解析)
- 10S406 建筑排水塑料管道安装
- DL∕T 1736-2017 光纤光栅仪器基本技术条件
- 2024年乡村农业(农机修理工、技师)技能知识考试题库与答案
- 10kV架空线路专项施工方案
- 从传统生产力到新质生产力
- 河北2024年河北北方学院招聘工作人员31人笔试历年典型考题及考点附答案解析
- 中秋国庆灯会彩灯设计方案
- AQ6111-2023个体防护装备安全管理规范
评论
0/150
提交评论