版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省十四校2024年高二数学第一学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若双曲线经过点,且它的两条渐近线方程是,则双曲线的方程是()A. B.C. D.2.下列命题中是真命题的是()A.“”是“”的充分非必要条件B.“”是“”的必要非充分条件C.在中“”是“”的充分非必要条件D.“”是“”的充要条件3.我们知道,偿还银行贷款时,“等额本金还款法”是一种很常见的还款方式,其本质是将本金平均分配到每一期进行偿还,每一期的还款金额由两部分组成,一部分为每期本金,即贷款本金除以还款期数,另一部分是利息,即贷款本金与已还本金总额的差乘以利率.自主创业的大学生张华向银行贷款的本金为48万元,张华跟银行约定,按照等额本金还款法,每个月还一次款,20年还清,贷款月利率为,设张华第个月的还款金额为元,则()A.2192 B.C. D.4.已知数列满足,,令,若对于任意不等式恒成立,则实数t的取值范围为()A. B.C. D.5.曲线在处的切线的倾斜角是()A. B.C. D.6.下列命题中正确的是A.命题“若,则”的否命题为:“若,则”B.若命题,是假命题,则实数C.“”的一个充分不必要条件是“”D.命题“若,则”的逆否命题为真命题7.若函数在定义域上单调递增,则实数的取值范围为()A. B.C. D.8.已知向量,,且,,,则一定共线的三点是()A.A,B,D B.A,B,CC.B,C,D D.A,C,D9.已知复数满足(其中为虚数单位),则复数的虚部为()A. B.C. D.10.宋元时期数学名著《算学启蒙》中有关于“松竹并生"的问题,松长三尺,竹长一尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的,分别为3,1,则输出的等于A.5 B.4C.3 D.211.已知直线与直线平行,且直线在轴上的截距比在轴上的截距大,则直线的方程为()A. B.C. D.12.已知p、q是两个命题,若“(¬p)∨q”是假命题,则()A.p、q都是假命题 B.p、q都是真命题C.p是假命题q是真命题 D.p是真命题q是假命题二、填空题:本题共4小题,每小题5分,共20分。13.已知点,是椭圆内的两个点,M是椭圆上的动点,则的最大值为______14.若抛物线的焦点与椭圆的右焦点重合,则实数m的值为______.15.某次实验得到如下7组数据,通过判断知道与具有线性相关性,其线性回归方程为,则______.(参考公式:)12345676.06.26.36.46.46.76.816.在递增等比数列中,其前项和,若,,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线,过焦点的直线l交抛物线C于M、N两点,且线段中点的纵坐标为2(1)求直线l的方程;(2)设x轴上关于y轴对称的两点P、Q,(其中P在Q的右侧),过P的任意一条直线交抛物线C于A、B两点,求证:始终被x轴平分18.(12分)已知数列中,,且满足(1)求证数列是等差数列,并求数列的通项公式;(2)求数列的前n项和19.(12分)已知抛物线E:y2=8x(1)求抛物线的焦点及准线方程;(2)过点P(-1,1)的直线l1与抛物线E只有一个公共点,求直线l1的方程;(3)过点M(2,3)的直线l2与抛物线E交于点A,B.若弦AB的中点为M,求直线l2的方程20.(12分)某公园有一形状可抽象为圆柱的标志性景观建筑物,该建筑物底面直径为8米,在其南面有一条东西走向的观景直道,建筑物的东西两侧有与观景直道平行的两段辅道,观景直道与辅道距离10米.在建筑物底面中心O的东北方向米的点A处,有一全景摄像头,其安装高度低于建筑物的高度(1)在西辅道上距离建筑物1米处的游客,是否在该摄像头的监控范围内?(2)求观景直道不在该摄像头的监控范围内的长度21.(12分)如图,在长方体中,,若点P为棱上一点,且,Q,R分别为棱上的点,且.(1)求直线与平面所成角的正弦值;(2)求平面与平面的夹角的余弦值.22.(10分)已知函数(1)讨论的单调性;(2)当时,证明
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】根据双曲线渐近线方程设出方程,再由其过的点即可求解.【题目详解】渐近线方程是,设双曲线方程为,又因为双曲线经过点,所以有,所以双曲线方程为,化为标准方程为.故选:A2、B【解题分析】根据充分条件、必要条件、充要条件的定义依次判断.【题目详解】当时,,非充分,故A错.当不能推出,所以非充分,,所以是必要条件,故B正确.当在中,,反之,故为充要条件,故C错;当时,,,,充分条件,因为,当时成立,非必要条件,故D错.故选:B.3、D【解题分析】计算出每月应还的本金数,再计算第n个月已还多少本金,由此可计算出个月的还款金额.【题目详解】由题意可知:每月还本金为2000元,设张华第个月的还款金额为元,则,故选:D4、D【解题分析】根据递推关系,利用裂项相消法,累加法求出,可得,原不等式转化为恒成立求解即可.【题目详解】,,,由累加法可得,又,,符合上式,,,对于任意不等式恒成立,则,解得.故选:D5、D【解题分析】求出函数的导数,再求出并借助导数的几何意义求解作答.【题目详解】由求导得:,则有,因此,曲线在处的切线的斜率为,所以曲线在处切线的倾斜角是.故选:D6、C【解题分析】.命题的否定是同时否定条件和结论;.将当成真命题解出的范围,再取补集即可;.求出“”的充要条件再判断即可;.判断原命题的真假即可【题目详解】解:对于A:命题“若,则”的否命题为:“若,则“,故A错误;对于B:当命题,是真命题时,,所以,又因为命题为假命题,所以,故B错误;对于C:由“”解得:,故“”是“”的充分不必要条件,故C正确;对于D:因为命题“若,则”是假命题,所以其逆否命题也是假命题,故D错误;故选:C7、D【解题分析】函数在定义域上单调递增等价于在上恒成立,即在上恒成立,然后易得,最后求出范围即可.【题目详解】函数的定义域为,,在定义域上单调递增等价于在上恒成立,即在上恒成立,即在上恒成立,分离参数得,所以,即.【题目点拨】方法点睛:已知函数的单调性求参数的取值范围的通解:若在区间上单调递增,则在区间上恒成立;若在区间上单调递减,则在区间上恒成立;然后再利用分离参数求得参数的取值范围即可.8、A【解题分析】由已知,分别表示出选项对应的向量,然后利用平面向量共线定理进行判断即可完成求解.【题目详解】因,,,选项A,,,若A,B,D三点共线,则,即,解得,故该选项正确;选项B,,,若A,B,C三点共线,则,即,解得不存,故该选项错误;选项C,,,若B,C,D三点共线,则,即,解得不存在,故该选项错误;选项D,,,若A,C,D三点共线,则,即,解得不存在,故该选项错误;故选:A.9、A【解题分析】由题目条件可得,即,然后利用复数的运算法则化简.【题目详解】因为,所以,则故复数的虚部为.故选:A.【题目点拨】本题考查复数的相关概念及复数的乘除运算,按照复数的运算法则化简计算即可,较简单.10、B【解题分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案【题目详解】解:当n=1时,a=3,b=2,满足进行循环的条件,当n=2时,a,b=4,满足进行循环的条件,当n=3时,a,b=8,满足进行循环的条件,当n=4时,a,b=16,不满足进行循环的条件,故输出的n值为4,故选:B【题目点拨】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答11、A【解题分析】分析可知直线不过原点,可设直线的方程为,其中且,利用斜率关系可求得实数的值,化简可得直线的方程.【题目详解】若直线过原点,则直线在两坐标轴上的截距相等,不合乎题意,设直线的方程为,其中且,则直线的斜率为,解得,所以,直线的方程为,即.故选:A.12、D【解题分析】由已知可得¬p,q都是假命题,从而可分析判断各选项【题目详解】∵“(¬p)∨q”是假命题,∴¬p,q都是假命题,∴p真,q假,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、##【解题分析】结合椭圆的定义求得正确答案.【题目详解】依题意,椭圆方程为,所以,所以是椭圆的右焦点,设左焦点为,根据椭圆的定义可知,,所以的最大值为.故答案为:14、【解题分析】分别求出椭圆和抛物线的焦点坐标即可出值.【题目详解】由椭圆方程可知,,,则,即椭圆的右焦点的坐标为,抛物线的焦点坐标为,∵抛物线的焦点与椭圆的右焦点重合,∴,即,故答案为:.15、9##【解题分析】求得样本中心点的坐标,代入回归直线,即可求得.详解】根据表格数据可得:故,解得.故答案为:.16、【解题分析】根据等比数列下标和性质得到,从而解出、,即可求出公比,从而求出,,即可得解;【题目详解】解:因为,所以,因为,所以、为方程的两根,所以或,因为为递增的等比数列,所以,所以所以或(舍去),所以,,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解题分析】(1)设直线l的方程为:,联立方程,利用韦达定理可得结果;(2)设,借助韦达定理表示,即可得到结果.【题目详解】(1)由已知可设直线l的方程为:,联立方程组可得,设,则又因为,得,故直线l的方程为:即为;(2)由题意可设,可设过P的直线为联立方程组可得,显然设,则所以所以始终被x轴平分18、(1)证明见解析;;(2).【解题分析】(1)根据等差数列的定义证明为常数即可;(2)利用错位相减法即可求和.【小问1详解】由得,,∴数列是以1为首项,1为公差的等差数列,∴,∴;【小问2详解】①,②,①-②得:,.19、(1)焦点为(2,0),准线方程为x=-2;(2)y=1或x-y+2=0或2x+y+1=0;(3)4x-3y+1=0.【解题分析】(1)根据抛物线的方程及其几何性质,求焦点和准线;(2)分直线l1的斜率为0和不为0两种情况,根据直线与抛物线只有一个公共点,由直线与x轴平行或Δ=0,得解;(3)利用点差法求出直线l2的斜率,即可得直线l2的方程【小问1详解】由题意,p=4,则焦点为(2,0),准线方程为x=-2【小问2详解】当直线l1的斜率为0时,y=1;当直线l1的斜率不为0时,设直线l1为x+1=m(y-1),联立,得y2-8my+8m+8=0,因为直线l1与抛物线E只有一个公共点,所以Δ=64m2-4(8m+8)=0,解得m=1或,所以直线l1的方程为x-y+2=0或2x+y+1=0,综上,直线l1为y=1或x-y+2=0或2x+y+1=0【小问3详解】由题意,直线l2的斜率一定存在,设其斜率为k,A(x1,y1),B(x2,y2),则8x1,8x2,两式作差得:8(x1-x2),即k,所以直线l2为y-3(x-2),即4x-3y+1=020、(1)不在(2)17.5米【解题分析】(1)以O为原点,正东方向为x轴正方向建立如图所示的直角坐标系,求出直线AB方程,判断直线AB与圆O的位置关系即可;(2)摄像头监控不会被建筑物遮挡,只需求出过点A的直线l与圆O相切时的直线方程即可.【小问1详解】以O为原点,正东方向为x轴正方向建立如图所示的直角坐标系则,观景直道所在直线的方程为依题意得:游客所在点为则直线AB的方程为,化简得,所以圆心O到直线AB的距离,故直线AB与圆O相交,所以游客不在该摄像头监控范围内.【小问2详解】由图易知:过点A的直线l与圆O相切或相离时,摄像头监控不会被建筑物遮挡,所以设直线l过A且恰与圆O相切,①若直线l垂直于x轴,则l不可能与圆O相切;②若直线l不垂直于x轴,设,整理得所以圆心O到直线l的距离为,解得或,所以直线l的方程为或,即或,设这两条直线与交于D,E由,解得,由,解得,所以,观景直道不在该摄像头的监控范围内的长度为17.5米.21、(1)(2)【解题分析】(1)建立如图所示的空间直角坐标系,用空间向量法求线面角;(2)用空间向量法求二面角【小问1详解】以D为坐标原点,射线方向为x,y,z轴正方向建立空间直角坐标系.当时,,所以,设平面的法向量为,所以,即不妨得,,又,所以,则【小问2详解】在长方体中,因为平面,所以平面平面,因为平面与平面交于,因为四边形为正方形,所以,所以平面,即为平面的一个法向量,,所以,又平面的法向量为,所以.22、(1)答
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版承包工地食堂餐厨垃圾处理合同模板3篇
- 2024蔬菜加工产品销售合作协议3篇
- 2024年股权转让合同标的及属性详细描述
- 2024年版物业托管服务协议版B版
- 二零二五版离婚协议书起草与审核合同2篇
- 2024版房屋赠与合同协议书大全
- 天津中德应用技术大学《教育技术与传播》2023-2024学年第一学期期末试卷
- 二零二五版家政服务+家庭健康促进合同3篇
- 太原幼儿师范高等专科学校《西医外科学医学免疫学与病原生物学》2023-2024学年第一学期期末试卷
- 二零二五年特殊用途变压器安装与性能测试合同2篇
- 迪士尼乐园总体规划
- 2024年江苏省苏州市中考数学试卷含答案
- 2024年世界职业院校技能大赛高职组“市政管线(道)数字化施工组”赛项考试题库
- 介绍蝴蝶兰课件
- 大学计算机基础(第2版) 课件 第1章 计算机概述
- 数字化年终述职报告
- 《阻燃材料与技术》课件 第5讲 阻燃塑料材料
- 2024年职工普法教育宣讲培训课件
- 安保服务评分标准
- T-SDLPA 0001-2024 研究型病房建设和配置标准
- (人教PEP2024版)英语一年级上册Unit 1 教学课件(新教材)
评论
0/150
提交评论