




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市金山区金山中学2024学年高二数学第一学期期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.△ABC的两个顶点坐标A(-4,0),B(4,0),它的周长是18,则顶点C的轨迹方程是()A. B.(y≠0)C. D.2.已知双曲线=1的一条渐近线方程为x-4y=0,其虚轴长为()A.16 B.8C.2 D.13.已知直线,当变化时,所有直线都恒过点()A.B.C.D.4.在空间直角坐标系中,已知点M是点在坐标平面内的射影,则的坐标是()A. B.C. D.5.已知数列是等比数列,数列是等差数列,若,则()A. B.C. D.6.在数列中,已知,则“”是“是单调递增数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.在等差数列中,若,则的值为()A. B.C. D.8.函数极小值为()A. B.C. D.9.函数的导函数的图象如图所示,则下列说法正确的是()A.函数在上单调递增B.函数的递减区间为C.函数在处取得极大值D.函数在处取得极小值10.如图,已知最底层正方体的棱长为a,上层正方体下底面的四个顶点是下层正方体上底面各边的中点,依此方法一直继续下去,则所有这些正方体的体积之和将趋近于()A. B.C. D.11.几何学史上有一个著名的米勒问题:“设点、是锐角的一边上的两点,试在边上找一点,使得最大的.”如图,其结论是:点为过、两点且和射线相切的圆的切点.根据以上结论解决一下问题:在平面直角坐标系中,给定两点,,点在轴上移动,当取最大值时,点的横坐标是()A.B.C.或D.或12.曲线的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线过点,且渐近线方程为,则该双曲线的标准方程为____________________.14.若斜率为的直线与椭圆交于,两点,且的中点坐标为,则___________.15.直线的一个法向量________.16.已知圆柱轴截面是边长为4的正方形,则圆柱的侧面积为______________
.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列中,,,等比数列中,,(1)求数列的通项公式;(2)记,求的最小值18.(12分)等差数列的前n项和为,已知(1)求的通项公式;(2)若,求n的最小值19.(12分)已知为数列的前项和,且.(1)求的通项公式;(2)若,求的前项和.20.(12分)已知数列是等差数列,数列是各项均为正数的等比数列,且,,.(1)求数列和的通项公式;(2)设,求数列的前项和.21.(12分)已知椭圆的左、右两个焦点,,离心率,短轴长为21求椭圆的方程;2如图,点A为椭圆上一动点非长轴端点,的延长线与椭圆交于B点,AO的延长线与椭圆交于C点,求面积的最大值22.(10分)已知函数在时有极值0.(1)求函数的解析式;(2)记,若函数有三个零点,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】根据三角形的周长得出,再由椭圆的定义得顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,可求得顶点C的轨迹方程.【题目详解】因为,所以,所以顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,即,所以顶点C的轨迹方程是,故选:D.【题目点拨】本题考查椭圆的定义,由定义求得动点的轨迹方程,求解时,注意去掉不满足的点,属于基础题.2、C【解题分析】根据双曲线的渐近线方程的特点,结合虚轴长的定义进行求解即可.【题目详解】因为双曲线=1的一条渐近线方程为x-4y=0,所以,因此该双曲线的虚轴长为,故选:C3、D【解题分析】将直线方程整理为,从而可得直线所过的定点.【题目详解】可化为,∴直线过定点,故选:D.4、C【解题分析】点在平面内的射影是坐标不变,坐标为0的点.【题目详解】点在坐标平面内的射影为,故点M的坐标是故选:C5、A【解题分析】结合等差中项和等比中项分别求出和,代值运算化简即可.【题目详解】由是等比数列可得,是等差数列可得,所以,故选:A6、C【解题分析】分别求出当、“是单调递增数列”时实数的取值范围,利用集合的包含关系判断可得出结论.【题目详解】已知,若,即,解得.若数列是单调递增数列,对任意的,,即,所以,对任意的恒成立,故,因此,“”是“是单调递增数列”充要条件.故选:C.7、C【解题分析】利用等差数列性质可求得,由可求得结果.【题目详解】由等差数列性质知:,,解得:;又,.故选:C.8、A【解题分析】利用导数分析函数的单调性,可求得该函数的极小值.【题目详解】对函数求导得,令,可得或,列表如下:减极小值增极大值减所以,函数的极小值为.故选:A.9、C【解题分析】根据函数单调性与导数之间的关系及极值的定义结合图像即可得出答案.【题目详解】解:根据函数的导函数的图象可得,当时,,故函数在和上递减,当时,,故函数在和上递增,所以函数在和处取得极小值,在处取得极大值,故ABD错误,C正确.故选:C.10、D【解题分析】由已知可判断出所有这些正方体的体积构成首项为,公比为的等比数列,然后求和可得答案.【题目详解】最底层上面第一个正方体的棱长为,其体积为,上面第二个正方体的棱长为,其体积为,上面第三个正方体的棱长为,其体积为,所有这些正方体的体积构成首项为,公比为的等比数列,其前项和为,当,,所以所有这些正方体的体积之和将趋近于.故选:D.11、A【解题分析】根据米勒问题的结论,点应该为过点、的圆与轴的切点,设圆心的坐标为,写出圆的方程,并将点、的坐标代入可求出点的横坐标.【题目详解】解:设圆心的坐标为,则圆的方程为,将点、的坐标代入圆的方程得,解得或(舍去),因此,点的横坐标为,故选:A.12、C【解题分析】由曲线方程直接求离心率即可.【题目详解】由题设,,,∴离心率.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】依题意,设所求的双曲线的方程为.点为该双曲线上的点,.该双曲线的方程为:,即.故本题正确答案是.14、-1【解题分析】根据给定条件设出点A,B的坐标,再借助“点差法”即可计算得解.【题目详解】依题意,线段的中点在椭圆C内,设,,由两式相减得:,而,于是得,即,所以.故答案为:15、(答案不唯一)【解题分析】根据给定直线方程求出其方向向量,再由法向量意义求解作答.【题目详解】直线的方向向量为,而,所以直线的一个法向量.故答案为:16、【解题分析】由圆柱轴截面的性质知:圆柱体的高为,底面半径为,根据圆柱体的侧面积公式,即可求其侧面积.【题目详解】由圆柱的轴截面是边长为4的正方形,∴圆柱体的高为,底面半径为,∴圆柱的侧面积为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)0【解题分析】(1)利用等差数列通项公式基本量的计算可求得,进而利用等比数列的基本量的计算即可求得数列的通项公式;(2)由(1)可知,则,观察分析即可解【小问1详解】设等差数列的公差为d,所以由,,得所以,从而,,所以,,q=3,所以【小问2详解】由(1)可知,所以,当n=1时,为正值﹐所以;当n=2时,为负值﹐所以;当时,为正值﹐所以又综上:当n=3时,有最小值018、(1)(2)12【解题分析】(1)设的公差为d,根据题意列出方程组,求得的值,即可求解;(2)利用等差数的求和公式,得到,结合的单调性,即可求解.【小问1详解】解:设的公差为d,因为,可得,解得,所以,即数列的通项公式为【小问2详解】解:由,可得,根据二次函数的性质且,可得单调递增,因为,所以当时,,故n的最小值为1219、(1)(2)【解题分析】(1)由与的关系结合等比数列的定义得出的通项公式;(2)由(1)得出,再由错位相减法得出的前项和.【小问1详解】因为,所以当时,,所以.当时,,两式相减,得,所以,所以,所以是以1为首项,2为公比的等比数列,所以.【小问2详解】由(1)得,所以,两边同乘以,得,两式相减,得,所以.20、(1),;(2),.【解题分析】(1)利用等差数列与等比数列的通项公式即可得出;(2)利用分组求和的方法结合等差数列与等比数列的前n项和公式即可得出.【题目详解】(1)设等差数列的公差为,等比数列的公比为,且,依题意有,由,又,解得,∴,即,;(2)∵,∴前项和.∴前项和,.21、(1)椭圆的标准方程为(2)面积的最大值为【解题分析】(1)由题意得,再由,标准方程为;(2)①当的斜率不存在时,不妨取;②当的斜率存在时,设的方程为,联立方程组,又直线的距离点到直线的距离为面积的最大值为.试题解析:(1)由题意得,解得,∵,∴,,故椭圆的标准方程为(2)①当直线的斜率不存在时,不妨取,故;②当直线的斜率存在时,设直线的方程为,联立方程组,化简得,设点到直线的距离因为是线段的中点,所以点到直线的距离为,∴综上,面积的最大值为.【题目点拨】本题主要考查椭圆的标准方程及其性质、点到直线的距离、弦长公式和三角形面积公式等知识,涉及函数与方程思想、数形结合思想分类与整合、转化与化归等思想,并考查运算求解能力和逻辑推理能力,属于较难题型.第一小题由题意由方程思想建立方程组求得标准方程为;(2)利用分类与整合思想分当的斜率不存在与存在两种情况求解,在斜率存在时,由舍而不求法求得,再求得点到直线的距离为面积的最大值为.22、(1)(2)【解题分析】(1)求出函数的导函数,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旧村改造拆迁补偿与购买协议模板
- 车辆抵押经营贷款协议
- 创新型中小企业财务代理记账合作协议
- 车辆事故鉴定及理赔协商合同范本
- 餐饮店租赁及品牌形象使用权转让及经营管理合同
- 2025年模具行业数字化设计仿真技术产业竞争力与提升策略报告
- 毕业论文学前教育8000字
- 会计学本科毕业论文开题报告
- 智能小车的毕业论文
- 教育类毕业论文
- 【企业薪酬管理研究国内外文献综述4400字】
- 市政公用工程设计文件编制深度规定(2013年高清版)
- GB/T 19139-2012油井水泥试验方法
- GB/T 18314-2001全球定位系统(GPS)测量规范
- 工贸行业重点可燃性粉尘目录(2022版)
- 铁道概论试题及答案重要
- 空间几何中的平行与垂直 新高考 数学 一轮复习专项提升 精讲精练
- 近代史期末复习试题
- 教学设计 完整版:Summer holiday plans
- 2022年武汉市法院书记员招聘考试题库及答案解析
- DB34-T 4010-2021 水利工程外观质量评定规程-高清现行
评论
0/150
提交评论