安徽省安庆市石牌高级中学2022-2023学年高一数学文联考试题含解析_第1页
安徽省安庆市石牌高级中学2022-2023学年高一数学文联考试题含解析_第2页
安徽省安庆市石牌高级中学2022-2023学年高一数学文联考试题含解析_第3页
安徽省安庆市石牌高级中学2022-2023学年高一数学文联考试题含解析_第4页
安徽省安庆市石牌高级中学2022-2023学年高一数学文联考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省安庆市石牌高级中学2022-2023学年高一数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某扇形的半径为1cm,它的弧长为2cm,那么该扇形的圆心角为()A.2°

B.4rad

C.4°

D.2rad参考答案:【知识点】扇形的弧长公式.D

解:因为扇形的弧长公式为l=r|α|,由已知,l=2,r=1,所以=2弧度,故选D.【思路点拨】由已知得到l=2,r=1代入扇形的弧长公式:l=r|α|,得到答案.2.已知集合A={1,2,3,4},B={x|﹣2≤3x﹣2≤10,x∈R},则A∩B=()A.{1} B.{1,2,3,4} C.{1,3} D.{1,4}参考答案:B【考点】交集及其运算.【分析】先分别求出集合A,B,由此利用交集的定义能求出A∩B.【解答】解:∵集合A={1,2,3,4},B={x|﹣2≤3x﹣2≤10,x∈R}={x|0≤x≤4},∴A∩B={1,2,3,4}.故选:B.3.已知函数f(x)=,则f[f()]的值是()A. B.9 C.﹣9 D.﹣参考答案:A【考点】函数的值.【分析】由已知条件利用分段函数的性质求解.【解答】解:∵,∴f()==﹣2,∴=3﹣2=.故答案为:.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.4.若函数y=x2﹣3x﹣4的定义域为[0,m],值域为,则m的取值范围是()

A.(0,4]

B.

C.

D.参考答案:C略5.一组数据的方差是,将这组数据中的每一个数据都乘以2,所得到的一组数据的方差是()A.

B.

C.

D.参考答案:C略6.给出如下三个等式:①;②;③.则下列函数中,不满足其中任何一个等式的函数是(

)A.

B.

C.

D.参考答案:C7.函数f(x)=ln(x-)的图象是()A.

B.

C. D.参考答案:B【考点】对数函数图象与性质的综合应用.【专题】计算题;数形结合.【分析】求出函数的定义域,通过函数的定义域,判断函数的单调性,推出选项即可.【解答】解:因为x->0,解得x>1或﹣1<x<0,所以函数f(x)=ln(x-)的定义域为:(﹣1,0)∪(1,+∞).所以选项A、C不正确.当x∈(﹣1,0)时,g(x)=x-是增函数,因为y=lnx是增函数,所以函数f(x)=ln(x-)是增函数.故选B.【点评】本题考查函数的图象的综合应用,对数函数的单调性的应用,考查基本知识的综合应用,考查数形结合,计算能力.判断图象问题,一般借助:函数的定义域、值域、单调性、奇偶性、周期性、以及函数的图象的变化趋势等等.8.下列四组函数中,表示同一函数的是()A. B.f(x)=lgx2,g(x)=2lgxC. D.参考答案:A【考点】判断两个函数是否为同一函数.【分析】根据两个函数的定义域相同,对应关系也相同,即可判断它们是同一函数.【解答】解:对于A,f(x)=|x|(x∈R),与g(x)==|x|(x∈R)的定义域相同,对应关系也相同,∴是同一函数;对于B,f(x)=lgx2=2lg|x|(x≠0),与g(x)=2lgx(x>0)的定义域不同,对应关系也不同,∴不是同一函数;对于C,f(x)==x+1(x≠1),与g(x)=x﹣1(x∈R)的定义域不同,对应关系也不同,∴不是同一函数;对于D,f(x)=?=(x≥1),与g(x)=(x∈R)的定义域不同,∴不是同一函数.故选:A.9.三个数70。3,70。2,㏑0.3,的大小顺序是(

)A、70。3>70。2>㏑0.3,

B、70。3>㏑0.3>70。2C、70。2>70。3>㏑0.3,

D、㏑0.3>70。3>70。2参考答案:A10.在下列区间中,函数=ex+4x-3的零点所在的区间为().A.

B.

C.

D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.入射光线射在直线:上,经过轴反射到直线上,再经过轴反射到直线上,则直线的一般式方程为

.参考答案:12.若,则______.参考答案:13.若函数为定义在R上的奇函数,且在内是增函数,又,则不等式的解集为______________.参考答案:略14.已知幂函数的图像过点,则

.参考答案:3设幂函数的解析式为,∵点∴,解得,∴,∴.答案:

15.把一个正方形等分成九个相等的小正方形,将中间的一个正方形挖掉如图(1);再将剩余的每个正方形都分成九个相等的小正方形,并将中间一个挖掉,得图(2);如此继续下去……,第三个图中共挖掉

个正方形;第n个图中被挖掉的所有小正方形个数为

.

参考答案: 73

略16.若扇形的周长为16cm,圆心角为2rad,则该扇形的面积为cm2.参考答案:16【考点】扇形面积公式.【分析】设扇形的半径为r,弧长为l,根据扇形周长和弧长公式列式,解之得r=4,l=8,再由扇形面积公式可得扇形的面积S.【解答】解设扇形的半径为r,弧长为l,则有,得r=4,l=8,故扇形的面积为S==16.故答案为:16.17.已知A(1,2),B(3,2),向量与相等,则x=

,y=

。参考答案:–1;1略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设函数图像中相邻的最高点和最低点分别为.(1)求函数f(x)的单调递减区间;(2)若函数f(x)的图像向左平移个单位长度后关于点(-1,0)对称,求的最小值.参考答案:解:(1)由题,,周期,∴,再由,即,得:,又,∴,,由,得的单减区间为.(注:亦可结合周期及最高点、最低点的坐标获得函数的单调递减区间.)(2)函数的图象向左平移个单位长度后,得,由题,,∴,,当时,的最小值为.

19.对定义域分别为的函数规定:函数(1)若函数写出函数的解析式;(2)求问题(1)中函数的最大值;(3)若其中是常数,且,请设计一个定义域为的函数及一个的值,使得并予以证明.参考答案:略20.(12分)已知函数f(x)=ax图象过点且g(x)=f(﹣x)(1)求f(x)解析式,并指出定义域和值域;(2)在同一坐标系中用描点法画出f(x)、g(x)图象.参考答案:考点: 指数函数的图像与性质.专题: 函数的性质及应用.分析: (1)由函数f(x)=ax图象过点,把点的坐标代入曲线方程可得函数y=f(x)的解析式,根据指数函数的性质可求其定义域和值域;(2)由g(x)=f(﹣x)可以直接求出函数g(x)的解析式,最后利用列表、描点、平滑曲线连结画出两个函数的图象.解答: (1)因为函数f(x)=ax图象过点,所以,,解得:a=2.所以,f(x)=2x.该函数的定义域为R,值域为(0,+∞);(2)g(x)=f(﹣x)=.下面用描点法作函数f(x)和g(x)的图象.列表描点如图,用平滑曲线连结,得到如图所示函数y=2x和函数y=的图象.点评: 本题考查了指数函数的图象和性质,训练了描点作图法作函数的图象,此题是基础题.21.已知定义在(﹣1,1)上的函数f(x)满足:对任意x,y∈(﹣1,1)都有f(x)+f(y)=f(x+y).(Ⅰ)求证:函数f(x)是奇函数;(Ⅱ)如果当x∈(﹣1,0]时,有f(x)<0,试判断f(x)在(﹣1,1)上的单调性,并用定义证明你的判断;(Ⅲ)在(Ⅱ)的条件下,若a﹣8x+1>0对满足不等式f(x﹣)+f(﹣2x)<0的任意x恒成立,求a的取值范围.参考答案:【考点】函数恒成立问题;函数奇偶性的性质;抽象函数及其应用.【分析】(Ⅰ)根据题意,先分析函数的定义域,可得其定义域关于原点对称,进而令y=x=0,可得f(0)=0,再令y=﹣x,分析可得f(﹣x)=﹣f(x),即可得答案;(Ⅱ)分析可得:y=f(x)为(﹣1,1)上单调递增,进而证明:先用定义法证明可得y=f(x)为(﹣1,0]上单调递增,进而结合函数的奇偶性可得y=f(x)为(﹣1,0]上单调递增,综合可得答案;(Ⅲ)根据题意,由函数的奇偶性以及单调性可得:若f(x﹣)+f(﹣2x)<0,则必有,解可得x的范围,所以原问题等价于a﹣8x+1>0对于﹣<x<恒成立,分析可得a的取值范围,即可得答案.【解答】解:(Ⅰ)由题可知,函数y=f(x)的定义域为(﹣1,1),关于原点对称;对于f(x)+f(y)=f(x+y).令y=x=0,可得2f(0)=f(0),从而f(0)=0,再令y=﹣x,可得f(x)+f(﹣x)=f(0)=0,即f(﹣x)=﹣f(x),所以y=f(x)为(﹣1,1)上的奇函数;(Ⅱ)y=f(x)为(﹣1,1)上单调递增,证明如下:设x1、x2为区间(﹣1,0]上的任意两个自变量的值,且x1<x2,则f(x1)﹣f(x2)=f(x1)+f(﹣x2)=f(x1﹣x2);由于﹣1<x1<x2<0,所以﹣1<x1﹣x2≤0,从而f(x1﹣x2)<0,即f(x1)<f(x2),所以y=f(x)为(﹣1,0]上单调递增,又由于y=f(x)为(﹣1,1)上的奇函数;由奇函数的性质分析可得:y=f(x)为[0,1)上单调递增,故y=f(x)为(﹣1,1)上单调递增,(Ⅲ)根据题意,若f(x﹣)+f(﹣2x)<0,则有f(x﹣)<f(2x﹣),则必有,解可得﹣<x<,所以原问题等价于a﹣8x+1>0对于﹣<x<恒成立,则必有a≥[8×()﹣1]=4,即a≥4;故a的取值范围是[4,+∞).22.(12分)(2015秋淮北期末)(A类题)设f(x)=,其中e为自然底数. (Ⅰ)若f(m)=2,求实数m的值; (Ⅱ)求f(x)的反函数f﹣1(x); (Ⅲ)判断f(x)的反函数f﹣1(x)的奇偶性. 参考答案:【考点】反函数;函数奇偶性的判断. 【专题】函数思想;综合法;函数的性质及应用. 【分析】(1)令f(m)=2列出方程,转化为二次函数解出; (2)将函数式子变形,用y表示出x,然后互换变量的符号得出反函数; (3)先判断反函数的定义域,再计算f﹣1(﹣x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论