广东省梅州市黎塘中学高三数学文模拟试卷含解析_第1页
广东省梅州市黎塘中学高三数学文模拟试卷含解析_第2页
广东省梅州市黎塘中学高三数学文模拟试卷含解析_第3页
广东省梅州市黎塘中学高三数学文模拟试卷含解析_第4页
广东省梅州市黎塘中学高三数学文模拟试卷含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省梅州市黎塘中学高三数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数f(x)是R上的奇函数,且f(x)的图象关于直线x=1对称,当x∈[﹣1,0)时,f(x)=1﹣()x,则f+f=(

)A.﹣1 B.1 C.2 D.2006参考答案:B【考点】函数奇偶性的性质.【专题】计算题;函数的性质及应用.【分析】由函数的对称性可得f(x)=f(2﹣x),再由奇偶性可得f(x)=﹣f(x﹣2),由此可推得函数的周期,根据周期性可把f,f转化为已知区间上求解.解:因为f(x)图象关于x=1对称,所以f(x)=f(2﹣x),又f(x)为奇函数,所以f(2﹣x)=﹣f(x﹣2),即f(x)=﹣f(x﹣2),则f(x+4)=﹣f(x+2)=﹣[﹣f(x)]=f(x),故4为函数f(x)的一个周期,从而f+f=f(0)+f(1),而f(0)=1﹣1=0,f(1)=﹣f(﹣1)=﹣[1﹣2]=1,故f(0)+f(1)=1,即f+f=1,故选:B.【点评】本题考查函数的奇偶性、周期性、对称性及其应用,考查函数求值,解决本题的关键是利用已知条件推导函数周期.2..已知全集U=R,集合,,则集合等于A.

B.

C.

D.参考答案:D3.已知等比数列的前n项和为Sn,且

)A.4n-1

B.4n-1

C.2n-1

D.2n-1参考答案:C4.若tan(π+α)=3,则sin(﹣α)cos(π﹣α)=()A.B.C.D.参考答案:B【考点】运用诱导公式化简求值;同角三角函数基本关系的运用.【专题】计算题;转化思想;三角函数的求值.【分析】由已知利用诱导公式可求tanα=3,利用诱导公式,同角三角函数基本关系式化简所求后代入计算即可得解.【解答】解:∵tan(π+α)=tanα=3,∴sin(﹣α)cos(π﹣α)=(﹣sinα)(﹣cosα)====.故选:B.【点评】本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.5.下列结论错误的是(

)

A.命题:“若”的逆否命题为:“若,

则”B.命题:“存在为实数,”的否定是“任意是实数,”C.“”是“”的充分不必要条件D.若p且q为假命题,则p、q均为假命题参考答案:D6.中国古代数学有着很多令人惊叹的成就.北宋沈括在《梦溪笔谈》卷十八《技艺》篇中首创隙积术.隙积术意即:将木捅一层层堆放成坛状,最上一层长有a个,宽有b个,共计ab个木桶.每一层长宽各比上一层多一个,共堆放n层,设最底层长有c个,宽有d个,则共计有木桶个.假设最上层有长2宽1共2个木桶,每一层的长宽各比上一层多一个,共堆放15层.则木桶的个数为()A.1260 B.1360 C.1430 D.1530参考答案:D【考点】85:等差数列的前n项和.【分析】由已知条件求出a,b,c,d,代入公式能求出结果.【解答】解:∵最上层有长2宽1共2个木桶,每一层的长宽各比上一层多一个,共堆放15层.∴最底层长有c=a+15=17个,宽有d=b+15=16个则木桶的个数为:=1530.故选:D.7.将集合用列举法表示,正确的是

)A.

B.

C.

D.参考答案:B8.已知双曲线的左、右两个焦点分别为,,,为其左右顶点,以线段,为直径的圆与双曲线的渐近线在第一象限的交点为,且,则双曲线的离心率为(

)A.

B.

C.

D.参考答案:B9.(2016?沈阳一模)设全集U=R,集合A={x|y=lgx},B={﹣1,1},则下列结论正确的是()A.A∩B={﹣1} B.(?RA)∪B=(﹣∞,0) C.A∪B=(0,+∞) D.(?RA)∩B={﹣1}参考答案:D【考点】交、并、补集的混合运算.【专题】集合思想;综合法;集合.【分析】先求出集合A,根据补集和交集以及并集的运算性质分别判断即可.【解答】解:根据对数函数的定义,得x>0,∴集合A={x|x>0},∴A∩B={x|x>0}∩{﹣1,1}={1},A错误;(?RA)∪B={x|x≤0}∪{﹣1,1}={x|x≤0或x=1},B错误;A∪B={x|x>0}∪{﹣1,1}={x|x>0或x=﹣1},C错误;(?RA)∩B={x|x≤0}∩{﹣1,1}={﹣1},D正确;故选:D.【点评】本题考察了集合的运算性质,考察对数函数的定义域,是一道基础题.10.已知直线l⊥平面,直线m?平面,则“∥”是“l⊥m”的()A.充分不必要条件

B.必要不充分条件

C.充分必要条件

D.既不充分又不必要条件参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.下列三个命题:①若函数的图象关于y轴对称,则;②若函数的图象关于点(1,1)对称,则a=1;③函数的图象关于直线x=1对称。其中真命题的序号是

。(把真命题的序号都填上)参考答案:②③12.设,且,则的最小值为

参考答案:1613.已知函数,且)有两个零点,则的取值范围是

.参考答案:略14.不共线的两个向量,且与垂直,垂直,与的夹角的余弦值为_______________.参考答案:略15.已知矩形的顶点都在半径为的球的球面上,且,则棱锥的体积为

.参考答案:16.已知向量,.若向量满足,,则=.参考答案:略17.若等比数列{an}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20=.参考答案:50【考点】等比数列的性质.

【专题】计算题;等差数列与等比数列.【分析】直接由等比数列的性质结合已知得到a10a11=e5,然后利用对数的运算性质化简后得答案.解:∵数列{an}为等比数列,且a10a11+a9a12=2e5,∴a10a11+a9a12=2a10a11=2e5,∴a10a11=e5,∴lna1+lna2+…lna20=ln(a1a2…a20)=ln(a10a11)10=ln(e5)10=lne50=50.故答案为:50.【点评】本题考查了等比数列的运算性质,考查对数的运算性质,考查了计算能力,是基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)

已知数列满足递推关系式

(Ⅰ)求

(Ⅱ)求数列的通项公式;

(Ⅲ)求数列的前n项和S-n.参考答案:解:(1)由知解得:同理得……4分(2)…………8分(3)…………12分19.(1)在等差数列中,,求及前项和;(2)在等比数列中,,求.参考答案:解析:(1)数列是等差数列,因此,由于

(2)

所以,

20.设函数f(x)=lnx+a(1﹣x). (Ⅰ)讨论:f(x)的单调性; (Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围. 参考答案:【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用. 【专题】开放型;导数的综合应用. 【分析】(Ⅰ)先求导,再分类讨论,根据导数即可判断函数的单调性; (2)先求出函数的最大值,再构造函数(a)=lna+a﹣1,根据函数的单调性即可求出a的范围. 【解答】解:(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞), ∴f′(x)=﹣a=, 若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增, 若a>0,则当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)上单调递增,在(,+∞)上单调递减, (Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=取得最大值,最大值为f()=﹣lna+a﹣1, ∵f()>2a﹣2, ∴lna+a﹣1<0, 令g(a)=lna+a﹣1, ∵g(a)在(0,+∞)单调递增,g(1)=0, ∴当0<a<1时,g(a)<0, 当a>1时,g(a)>0, ∴a的取值范围为(0,1). 【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题. 21.某普通高中为了解本校高三年级学生数学学习情况,对一模考试数学成绩进行分析,从中抽取了n名学生的成绩作为样本进行统计(该校全体学生的成绩均在[60,150]),按下列分组[60,70),[70,80),[80,90),[90,100),[100,110),[110,120),[120,130)[130,140),[140,150]作出频率分布直方图,如图1;样本中分数在[70,90)内的所有数据的茎叶图如图2:根据往年录取数据划出预录分数线,分数区间与可能被录取院校层次如表.分数[60,80)[80,120)[120,150)可能被录取院校层次专科本科自招(1)求n的值及频率分布直方图中的x,y值;(2)根据样本估计总体的思想,以事件发生的频率作为概率,若在该校高三年级学生中任取2人,求此2人都不能录取为专科的概率;(3)在选取的样本中,从可能录取为自招和专科两个层次的学生中随机抽取3名学生进行调研,用表示所抽取的3名学生中为自招的人数,求随机变量的分布列和数学期望.参考答案:(1)0.014;(2);(3)见解析【分析】(1)由图2知分数在的学生有4名,由图1知,频率为0.08,由此能求出的值及频率分布直方图中的值;(2)能被专科院校录取的人数为6人,抽取的50人中,成绩能被专科院校录取的频率是,从而从该校高三年级学生中任取1人能被专科院校录取的概率为,记该校高三年级学生中任取2人,都不能被专科院校录取的事件为A,由此可求出此2人都不能录取为专科的概率;(3)选取的样本中能被专科院校录取的人数为6人,成绩能过自招线人数为12人,随机变量的所有可能取值为0,1,2,3,分别求出随机变量的分布列和数学期望.【详解】(1)由图2知分数在的学生有4名,又由图1知,频率为:,则:,(2)能被专科院校录取的人数为:人抽取的50人中,成绩能被专科院校录取的频率是:从该校高三年级学生中任取1人能被专科院校录取的概率为记该校高三年级

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论