应用数理统计在电子通信专业中的应用_第1页
应用数理统计在电子通信专业中的应用_第2页
应用数理统计在电子通信专业中的应用_第3页
应用数理统计在电子通信专业中的应用_第4页
应用数理统计在电子通信专业中的应用_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

应用数理统计在电子通信专业中的应用摘要:应用数理统计在电子电路的随机信号处理及实验中有着广泛的应用,通信工程中信号的接收和发射,都需要应用数理统计学的理论作为基础。因为,信号是信息的载体。信号源的输出都是随机的,怎样在随机信号中找出我们所需要的信息,就需要使用统计方法来描述。同时,对于接收者来说怎样从一个不确定或不可预测的信号中获取我们所需要的信息,仍然需要再次利用统计学中的知识。引言应用数理统计是一门十分重要的大学数学基础课,也是唯一一门研究随机现象规律的学科,它指导人们从事物表象看到其本质。应用数理统计学是应用背景很广泛的一门学科。正如世界知名概率学家、华裔数学家钟开莱于1974年所说:“在过去半个世纪中,概率论从一个较小的、孤立的课题发展为一个与数学许多其它分支相互影响、内容宽广而深入的学科。”应用数理统计学应用于自然科学、社会科学、工程技术、经济、管理、军事和工农业生产等领域.经过不断的发展,学科本身的理论和方法日趋成熟,在社会生活中,就连面试、赌博、彩票、体育和天气等等也都会涉及到概率学知识。近年来,概率统计知识也越来越多的渗透到诸如物理学、遗传学、信息论等学科当中。尤其在电子信息通信方面尤为重要,甚至是通信原理的基础课程。可以说,概率统计是当今数学中最活跃,应用最广泛的学科之一。在此文中,进一步讨论概率统计在电子信息方面的应用。概率在信息中的应用根据应用数理统计中的知识所描述,事件的概率就是对于一次随机试验E,S是它的样本空间,那么对于随机试验E中的每一个事件A都赋予一个实数,记为P(A),这时,这个实数就是事件A的概率。我们知道一个事件的不确定性可以用事件出现的频率来描述,可能性越小,概率越小;反过来说,可能性越大,则概率就越大。由此就可以看出,信息中包含的信息量与事件发生的概率密切相关。在此,我们可以判断出,当一个事件的不确定性越小时,它所携带的信息量就越大,因为我们可以从中获得更多的信息。这个时候,我们设有一个函数,它满足对于一个事件的概率P(x),有对应的信息量I满足I=f[P(x)],由以上总结得出:P(x)越小,则I就越大;同样则有当P(x)越大时,I就越小。用数学式表达:P(x)→1时,I→0;P(x)→0时,I→。因为信息所包含的信息量可以用概率来表述,所以概率的基本性质例如相加性对于信息也是满足的。就是对于概率论来说,设是两两互不相容的事件,即对于=Ø,i≠j,i,j=1,2,...,则随机过程的统计特性:一维分布函数一维概率密度函数二维分布函数和二维概率密度n维分布函数和n维概率密度函数随机过程的数字特征1.数学期望(均值或统计平均)设随机过程在给定的时刻的取值是一个随机变量,起概率密度函数为则的数学期望为因为,使任意取得,所以可以将直接记为,而可以直接写为,这时,上式就变为随机过程在任意时刻的数学期望,所以上式可以写为对于均值性质如下:设C是常数,则有E(C)=C;设X是一个随机变量,C是常数,则有E(CX)=CE(X);设X和Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y);设X和Y是任意两个相互独立的随机变量,则有E(XY)=E(X).E(Y)。本性质可以推广至任意个相互独立的随机变量之积的情况。2.方差方差就是均放置与均值平方之差,它表示在随机时刻t对于均值的偏离程度。3.相关函数对于一维的概率密度函数用均值和方差就可以描述,对于二维概率密度函数的描述则仍需要引入应用数理统计学中的相关函数和协方差来对随机过程进行描述。4.协方差函数=式中:、——为任意两个时刻;、——所选取的两个时刻所得到的数学期望;——二维概率密度函数。5.相关函数式中:、——任取的两个时刻;——二维概率密度函数通过这些就可以对随机过程进行描述。通过对随机信号的描述我们可以正确的对信号做出判断和处理。但是,在对随机信号进行处理的过程中,我们难以避免的会遇到噪声和干扰,噪声和干扰会使我们在接收信号时,无法确定我们所收到的信号是否正确,更加的在增加了接收信号的不确定性,从而使信号的传输和接收产生误差。为了解决这个问题,在有限的条件下判断出信号的正确性,就需要通过统计推断中的假设检验理论来解决这个问题。假设检验在通信中的应用在统计学中,经过人们的长期实践,使得假设检验的一般过程比较明确。由于要检验的假设涉及总体均值,所以我们首先可以想到的是是否可以借助样本的均值这一统计量来进行判断。我们知道是的无偏估计,的观察值的大小在一定程度上,反映了的大小,所以,如果假设为真,则一次实验的观察值,满足不等式几乎是不会发生的。现在,在一次实验中出现了满足的,则我们可以怀疑原来假设的的正确性而拒绝,若出现的观测值满足,此时没有理由拒绝假设,因此,只能接受.在信号的统计检测与估计中,对于假设检验的定义是认为一个被观测的物理系统可能出于个状态之一。我们就称“系统处于状态(=1,2,...,M)为假设”。由于对系统一般只能进行有限的检测,假定观测数据矢量为,,并令,为为真时的观测数据为的条件概率密度;为系统出于时的先检概率,显然有及=1及 又称为转移概率,它一般只决定于干扰与噪声。因为我们只能根据数据观测量来判断系统处于何种状态,但因为是随机矢量,N有限,所以要检测结果完全正确也是不可能的。要判别在实际过程中,随机信号和有用信号存在的检测问题归结为:判别为在等M个假设中的哪一个假设为真的问题。经过进行统计判决的经验积累,在假设检验对信号进行统计判决时,一般遵循以下步骤:首先要对信号做出原假设;其次,选择出判决所要遵循的最佳准则;然后,进行试验,来获得进行信号统计所需要的资料;最后,根据数据和给定的最佳观测来进行统计判决。这样,我们就可以根据判决结果来判断出信号的有无,从而使信号的接收和传输简便,避免了在接收信号时遇到的噪声和干扰,不易出现误差。总结本文介绍了概率统计在电子通信方面的基本应用。利用概率来表示信号的不确定性从而便于对信号进行度量,利用均方值来判断改变信号的频谱,使信号便于在多重信道中传输,并介绍了均值,方差

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论