版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省广元市剑州中学校2021年高一数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若用一个平面去截一个正方体得到一个截面多边形,则该多边形不可能是【
】.
A.锐角三角形
B.直角三角形
C.菱形
D.正六边形参考答案:B2.在△ABC中,∠A=120°,,则的最小值是(
)A.2 B.4 C. D.12参考答案:C【分析】根据,,得到,,平方计算得到最小值.【详解】故答案为C【点睛】本题考查了向量的模,向量运算,均值不等式,意在考查学生的计算能力.3.已知集合,则A.
B.
C.
D.参考答案:C
4.已知 A.-1
B.0
C.1
D.2参考答案:A略5.过点(1,0)且与直线平行的直线方程是A.
B.
C.
D.参考答案:A6.下列命题中:①若?=0,则=或=;②若不平行的两个非零向量,满足||=||,则()?(﹣)=0;
③若与平行,则;
④若∥,∥,则∥;其中真命题的个数是()A.1B.2C.3D.4参考答案:B略7.右图是一个几何体的三视图,其中正视图是边长为2的等边三角形,侧视图是直角边长分别为1与的直角三角形,俯视图是半径为1的半圆,则该几何体的体积等于(
)A.
B.
C.
D.参考答案:A8.下列程序语句不正确的是
(
)A.INPUT“MATH=”;a+b+c
B.PRINT“MATH=”;a+b+cC.
D.=参考答案:A9.已知函数f(x)=﹣2sin2x+2sinxcosx+1(Ⅰ)求f(x)的最小正周期及对称中心(Ⅱ)若x∈[﹣,],求f(x)的最大值和最小值.参考答案:【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】(1)利用二倍角以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,即可求周期和对称中心.(2)x∈[﹣,]时,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的取值最大和最小值.【解答】解:(1)函数f(x)=﹣2sin2x+2sinxcosx+1,化简可得:f(x)=cos2x﹣1+sin2x+1=sin2x+cos2x=2sin(2x+).∴f(x)的最小正周期T=,由2x+=kπ(k∈Z)可得对称中心的横坐标为x=kπ∴对称中心(kπ,0),(k∈Z).(2)当x∈[﹣,]时,2x+∈[,]当2x+=时,函数f(x)取得最小值为.当2x+=时,函数f(x)取得最大值为2×1=2.10.等式成立的条件是(
)A.x≠2 B.x>0 C.x>2 D.0<x<2参考答案:C【考点】函数的定义域及其求法.【专题】方程思想;综合法;函数的性质及应用.【分析】根据二次根式的性质得到关于x的不等式组,解出即可.【解答】解:由题意得:,解得:x>2,故选:C.【点评】本题考查了求函数的定义域问题,考查了二次个数的性质,是一道基础题.二、填空题:本大题共7小题,每小题4分,共28分11.若函数的定义域为[-1,2],则函数的定义域是
参考答案:[-1,5];12.设Sn公差不为0的等差数列{}的前n项和,且S1,S2,S4成等比数列,则等于_____参考答案:13.将函数的图象向右平移个单位后,得到函数的图象,则的值是____.参考答案:0【分析】利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再代入后可得g()的值.【详解】解:将函数f(x)=sin(2x+π)的图象向右平移个单位后,得到函数g(x)=sin[2(x﹣)+π]=cos2x的图象,则g()=cos(2×)=0,故答案为:0.【点睛】本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象平移变换,属于基础题.14.在轴上与点和点等距离的点的坐标为
.参考答案:15.与终边相同的最小正角是_______________.参考答案:16.=_____________参考答案:17.在空间直角坐标系中,设点是点关于坐标平面的对称点,则线段的长度等于__________.参考答案:10略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知是定义在上的奇函数,且当时,.(Ⅰ)求的表达式;(Ⅱ)判断并证明函数在区间上的单调性.参考答案:(Ⅰ)解:∵是奇函数,∴对定义域内任意的,都有--1分令得,,即∴当时,
--------------3分又当时,,此时
---5分故
--------------7分(Ⅱ)解:函数在区间上是减函数,下面给予证明.-----------8分设,则
-----10分∵∴,即---13分故函数在区间上是减函数.
------------14分
略19.已知函数f(x)=b+logax(x>0且a≠1)的图象经过点(8,2)和(1,﹣1).(1)求f(x)的解析式;(2)[f(x)]2=3f(x),求实数x的值;(3)令y=g(x)=2f(x+1)﹣f(x),求y=g(x)的最小值及其最小值时x的值.参考答案:【考点】对数函数的单调性与特殊点.【分析】(1)由已知得b+loga8=2,b+loga1=﹣1,从而求解析式即可;(2)[f(x)]2=3f(x),即f(x)=0或3,即可求实数x的值;(3)化简g(x)=2[log2(x+1)﹣1]﹣(log2x﹣1)=log2(x++2)﹣1,从而利用基本不等式求最值.【解答】解:(1)由已知得,b+loga8=2,b+loga1=﹣1,(a>0且a≠1),解得a=2,b=﹣1;故f(x)=log2x﹣1(x>0);(2)[f(x)]2=3f(x),即f(x)=0或3,∴log2x﹣1=0或3,∴x=2或16;(3)g(x)=2f(x+1)﹣f(x)=2[log2(x+1)﹣1]﹣(log2x﹣1)=log2(x++2)﹣1≥1,当且仅当x=,即x=1时,等号成立).于是,当x=1时,g(x)取得最小值1.【点评】本题考查了对数的运算及对数函数的应用,同时考查了基本不等式的应用.20.设圆C满足三个条件①过原点;②圆心在y=x上;③截y轴所得的弦长为4,求圆C的方程.参考答案:【考点】圆的标准方程. 【专题】计算题;方程思想;数形结合法;直线与圆. 【分析】分圆心C在第一象限和第三象限两种情况,当圆心C1在第一象限时,过C1分别作出与x轴和y轴的垂线,根据角平分线的性质得到四边形OBCD为正方形,连接C1A,由题意可知圆C与y轴截得的弦长为4,根据垂径定理即可求出正方形的边长即可得到圆心C的坐标,在直角三角形ABC中,利用勾股定理即可求出AC的长即为圆的半径,由圆心和半径写出圆的方程;当圆心C在第三象限时,同理可得圆C的方程. 【解答】解:根据题意画出图形,如图所示: 当圆心C1在第一象限时,过C1作C1D垂直于x轴,C1B垂直于y轴,连接AC1, 由C1在直线y=x上,得到C1B=C1D,则四边形OBC1D为正方形, ∵与y轴截取的弦OA=4,∴OB=C1D=OD=C1B=2,即圆心C1(2,2), 在直角三角形ABC1中,根据勾股定理得:AC1=2, 则圆C1方程为:(x﹣2)2+(y﹣2)2=8; 当圆心C2在第三象限时,过C2作C2D垂直于x轴,C2B垂直于y轴,连接AC2, 由C2在直线y=x上,得到C2B=C2D,则四边形OB′C2D′为正方形,∵与y轴截取的弦OA′=4,∴OB′=C2D′, =OD′=C2B′=2,即圆心C2(﹣2,﹣2), 在直角三角形A′B′C2中,根据勾股定理得:A′C2=2, 则圆C1方程为:(x+2)2+(y+2)2=8, ∴圆C的方程为:(x﹣2)2+(y﹣2)2=8或(x+2)2+(y+2)2=8. 【点评】本题考查了角平分线定理,垂径定理,正方形的性质及直角三角形的性质,做题时注意分两种情况,利用数形结合的思想,分别求出圆心坐标和半径,写出所有满足题意的圆的标准方程,是中档题. 21.已知单位向量和的夹角为,(1)试判断与的关系并证明;(2)求在方向上的投影。参考答案:(1)垂直,证明略;(2).22.(本小题满分12分)
已知.
(Ⅰ)求的值;(Ⅱ)求的值.参考答
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 世界地理 澳大利亚
- 一年级语文下册《语文园地八》课件
- 单位管理制度收录大全【员工管理】
- 港口生产组织与管理课件-港口企业的生产运作
- 消防整改项目可行性研究报告两
- 铜铝合金制品项目可行性研究报告
- 生活中的经济学课件
- 2025年瓦楞纸生项目可行性研究报告
- 氧气瓶项目安全风险评价报告
- 2025年中国公共云存储服务行业发展前景预测及投资战略研究报告
- (正式版)SHT 3046-2024 石油化工立式圆筒形钢制焊接储罐设计规范
- 新华DCS软件2.0版使用教程-文档资料
- 志愿服务证明(多模板)
- 游戏综合YY频道设计模板
- (高清正版)JJF 1908-2021 双金属温度计校准规范
- (高清版)严寒和寒冷地区居住建筑节能设计标准JGJ26-2018
- 项目经理绩效考核评分表
- .运维服务目录
- 造纸化学品及其应用
- 精品资料(2021-2022年收藏)强制检定工作计量器具目录全解
- 集团客户授信业务风险管理办法模板
评论
0/150
提交评论