版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024学年浙江省鄞州中学高二上数学期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的离心率为,则双曲线C的渐近线方程为()A. B.C. D.2.已知圆与直线至少有一个公共点,则的取值范围为()A. B.C. D.3.已知点,,直线:与线段相交,则实数的取值范围是()A.或 B.或C. D.4.若直线与互相平行,且过点,则直线的方程为()A. B.C. D.5.某学校随机抽取了部分学生,对他们每周使用手机的时间进行统计,得到如下的频率分布直方图.则下列说法:①;②若抽取100人,则平均用时13.75小时;③若从每周使用时间在,,三组内的学生中用分层抽样的方法选取8人进行访谈,则应从使用时间在内的学生中选取的人数为3.其中正确的序号是()A.①② B.①③C.②③ D.①②③6.过点且平行于直线的直线的方程为()A. B.C. D.7.已知双曲线的离心率为,左焦点为F,实轴右端点为A,虚轴上端点为B,则为()A.直角三角形 B.钝角三角形C.等腰三角形 D.锐角三角形8.已知等差数列的前n项和为,且,,则为()A. B.C. D.9.校庆当天,学校需要在靠墙的位置用围栏围起一个面积为200平方米的矩形场地.用来展示校友的书画作品.靠墙一侧不需要围栏,则围栏总长最小需要()米A.20 B.40C. D.10.球O为三棱锥的外接球,和都是边长为的正三角形,平面PBC平面ABC,则球的表面积为()A. B.C. D.11.已知分别表示随机事件发生的概率,那么是下列哪个事件的概率()A事件同时发生B.事件至少有一个发生C.事件都不发生D事件至多有一个发生12.若数列是等比数列,且,则()A.1 B.2C.4 D.8二、填空题:本题共4小题,每小题5分,共20分。13.“五经”是《诗经》、《尚书》、《礼记》、《周易》、《春秋》的合称,贵为中国文化经典著作,所载内容及哲学思想至今仍具有积极意义和参考价值.某校计划开展“五经”经典诵读比赛活动,某班有、两位同学参赛,比赛时每位同学从这本书中随机抽取本选择其中的内容诵读,则、两位同学抽到同一本书的概率为______.14.直线l过抛物线的焦点F,与抛物线交于A,B两点,若,则直线l的斜率为______15.在等比数列中,,,则公比________.16.如果方程表示焦点在轴上的椭圆,那么实数的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和为,且(1)求数列的通项公式;(2)若,求数列的前项和.18.(12分)已知点,圆,点Q在圆上运动,的垂直平分线交于点P.(1)求动点P的轨迹的方程;(2)过点的动直线l交曲线C于A、B两点,在y轴上是否存在定点T,使以AB为直径的圆恒过这个点?若存在,求出点T的坐标,若不存在,请说明理由.19.(12分)已知甲组数据的茎叶图如图所示,其中数据的整数部分为茎,数据的小数部分(仅一位小数)为叶,例如第一个数据为5.3(1)求:甲组数据的平均值、方差、中位数;(2)乙组数据为,且甲、乙两组数据合并后的30个数据的平均值为,方差为,求:乙组数据的平均值和方差,写出必要的计算步骤.参考公式:平均值,方差20.(12分)设数列的前n项和为,且,数列(1)求和的通项公式;(2)设数列的前n项和为,证明:21.(12分)在四棱锥中,底面ABCD是矩形,点E是线段PA的中点.(1)求证:平面EBD;(2)若是等边三角形,,平面平面ABCD,求点E到平面PDB的距离.22.(10分)已知椭圆过点,且离心率,为坐标原点.(1)求椭圆的方程;(2)判断是否存在直线,使得直线与椭圆相交于两点,直线与轴相交于点,且满足,若存在,求出直线的方程;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】根据a的值和离心率可求得b,从而求得渐近线方程.【题目详解】由双曲线的离心率为,知,则,即有,故,所以双曲线C的渐近线方程为,即,故选:B.2、C【解题分析】利用点到直线距离公式求出圆心到直线的距离范围,从而求出的取值范围.【题目详解】圆心到直线的距离,当且仅当时等号成立,故只需即可.故选:C3、A【解题分析】由可求出直线过定点,作出图象,求出和,数形结合可得或,即可求解.【题目详解】由可得:,由可得,所以直线:过定点,由可得,作出图象如图所示:,,若直线与线段相交,则或,解得或,所以实数的取值范围是或,故选:A.4、D【解题分析】由题意设直线的方程为,然后将点代入直线中,可求出的值,从而可得直线的方程【题目详解】因为直线与互相平行,所以设直线的方程为,因为直线过点,所以,得,所以直线的方程为,故选:D5、B【解题分析】根据频率分布直方图中小矩形的面积和为1可求出,再求出频率分布直方图的平均值,即为抽取100人的平均值的估计值,再利用分层抽样可确定出使用时间在内的学生中选取的人数为3.【题目详解】,故①正确;根据频率分布直方图可估计出平均值为,所以估计抽取100人的平均用时13.75小时,②的说法太绝对,故②错误;每周使用时间在,,三组内的学生的比例为,用分层抽样的方法选取8人进行访谈,则应从使用时间在内的学生中选取的人数为,故③正确.故选:B.6、B【解题分析】根据平行设直线方程,代入点计算得到答案.【题目详解】设直线方程为,将点代入直线方程得到,解得.故直线方程为:.故选:B.7、A【解题分析】根据三边的关系即可求出【题目详解】因,所以,而,,,所以,即,所以为直角三角形故选:A8、C【解题分析】直接由等差数列求和公式结合,求出,再由求和公式求出即可.【题目详解】由题意知:,解得,则.故选:C.9、B【解题分析】在出矩形中,设,得到,结合基本不等式,即可求解【题目详解】如图所示,在矩形中,设,则,根据题意,可得矩形围栏总长为因为,可得,当且仅当时,即时,等号成立,即围栏总长最小需要米.故选:B.10、B【解题分析】取中点为T,以及的外心为,的外心为,依据平面平面可知为正方形,然后计算外接球半径,最后根据球表面积公式计算.【题目详解】设中点为T,的外心为,的外心为,如图由和均为边长为的正三角形则和的外接圆半径为,又因为平面PBC平面ABC,所以平面,可知且,过分别作平面、平面的垂线相交于点即为三棱锥的外接球的球心,且四边形是边长为的正方形,所以外接球半径,则球的表面积为,故选:B11、C【解题分析】表示事件至少有一个发生概率,据此得到答案.【题目详解】分别表示随机事件发生的概率,表示事件至少有一个发生的概率,故表示事件都不发生的概率.故选:C.12、C【解题分析】根据等比数列的性质,由题中条件,求出,即可得出结果.【题目详解】因为数列是等比数列,由,得,所以,因此.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、##【解题分析】计算出、两位同学各随机抽出一本书的结果种数,以及、两位同学抽到同一本书的结果种数,利用古典概型的概率公式可求得所求事件的概率.【题目详解】、两位同学抽到的结果都有种,由分步乘法计数原理可知,、两位同学各随机抽出一本书,共有种结果,而、两位同学抽到同一本书的结果有种,故所求概率为.故答案为:.14、【解题分析】如图,设,两点的抛物线的准线上的射影分别为,,过作的垂线,在三角形中,等于直线的倾斜角,其正切值即为值,利用在直角三角形中,求得,从而得出直线的斜率【题目详解】解:如图,当在第一象限时,设,两点的抛物线的准线上的射影分别为,,过作的垂线,在三角形中,等于直线的倾斜角,其正切值即为值,由抛物线的定义可知:设,则,,,在直角三角形中,,所以,则直线的斜率;当在第四象限时,同理可得,直线的斜率,综上可得直线l的斜率为;故答案为:15、【解题分析】根据等比数列的性质求解即可.【题目详解】因为等比数列中,故,又,故,故.故答案为:【题目点拨】本题主要考查了等比数列的性质运用,需要注意分析项与公比的正负,属于基础题.16、【解题分析】化简椭圆的方程为标准形式,列出不等式,即可求解.【题目详解】由题意,方程可化为,因为方程表示焦点在轴上的椭圆,可得,解得,实数的取值范围是.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)根据,再结合等比数列的定义,即可求出结果;(2)由(1)可知,再利用错位相减法,即可求出结果.【小问1详解】解:因为,当时,,解得当时,,所以,即.所以数列是首项为2,公比为2的等比数列.故.【小问2详解】解:由(1)知,则,所以①②,①-②得.所以数列的前项和18、(1);(2)存在,T(0,1)﹒【解题分析】(1)根据椭圆的定义,结合即可求P的轨迹方程;(2)假设存在T(0,t),设AB方程为,联立直线方程和椭圆方程,代入=0即可求出定点T.【小问1详解】由题可知,,则,由椭圆定义知P的轨迹是以F1、为焦点,且长轴长为的椭圆,∴,∴,∴P的轨迹方程为C:;【小问2详解】假设存在T(0,t)满足题意,易得AB的斜率一定存在,否则不会存在T满足题意,设直线AB的方程为,联立,化为,易知恒成立,∴(*)由题可知,将(*)代入可得:即∴,解,∴在y轴上存在定点T(0,1),使以AB为直径的圆恒过这个点T.19、(1),,;(2),.【解题分析】(1)根据茎叶图求平均值,再由方差与均值的关系求,将茎叶图中的数据从小到大排列确定中位数M.(2)由甲乙平均数及(1)的结果列方程求乙组数据的平均值,再由方差与均值的关系列方程组求出,进而求方差.【小问1详解】,∴,由茎叶图知:数据从小到大排列为∴.【小问2详解】由题意,,又,因此.20、(1),(2)证明见解析【解题分析】(1)根据可得,从而可得;(2)利用错位相减法可得,从而可得,又,即可证明不等式成立.【小问1详解】解:∵,∴当时,,当时,,∴,经检验,也符合,∴,;【小问2详解】证明:因为,∴,∴∴,又∵,∴,所以21、(1)见解析(2)【解题分析】(1)连接交于点,连接,由中位线定理结合线面平行的判定证明即可;(2)由得出点到平面的距离,再由是的中点,得出点到平面的距离.【小问1详解】连接交于点,连接.因为分别是的中点,所以.又平面EBD,平面EBD,所以平面EBD;【小问2详解】过点作的垂线,垂足为,连接.因为平面平面ABCD,平面平面ABCD,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河南省郑州市中原区2024-2025学年上学期高三年级一测模拟演练 英语试卷(含答案无听力原文、答案及音频)
- 2025年度劳动合同员工福利待遇与补贴合同3篇
- 2024版标准汽车租赁合同协议
- 2024路边广告位使用权及城市美化工程合作合同3篇
- 2024项目开发全过程委托协议版B版
- 健康监护知识培训课件
- 福建省南平市建阳水吉中学2020-2021学年高三物理期末试卷含解析
- 2024男方离婚条件下的赡养费支付与房产分割合同3篇
- 2025年度冷链仓储行业员工劳动合同书3篇
- 2024版混凝土构件加工承揽合同
- GB/T 25772-2010滚动轴承铁路客车轴承
- GB/T 1335.2-2008服装号型女子
- GB 31247-2014电缆及光缆燃烧性能分级
- DCC20网络型监视与报警
- 项目实施路径课件
- 《简单教数学》读书心得课件
- 《室速的诊断及治疗》课件
- 毕业设计(论文)-基于AT89C51单片机的温度控制系统设计
- 士卓曼种植系统外科植入流程课件
- 二手新能源汽车充电安全承诺书
- 二年级下册《一起长大的玩具》导读教学-一场别样的童年之旅
评论
0/150
提交评论