定积分概念与性质_第1页
定积分概念与性质_第2页
定积分概念与性质_第3页
定积分概念与性质_第4页
定积分概念与性质_第5页
已阅读5页,还剩72页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

定积分概念与性质第一页,共七十七页,编辑于2023年,星期日0定积分概念与性质第二页,共七十七页,编辑于2023年,星期日分割第三页,共七十七页,编辑于2023年,星期日取近似第四页,共七十七页,编辑于2023年,星期日求和取极限2.变速直线运动的路程第五页,共七十七页,编辑于2023年,星期日(1)分割

第六页,共七十七页,编辑于2023年,星期日(2)取近似第七页,共七十七页,编辑于2023年,星期日共同特性分割,取近似,求和,取极限(3)求和(4)取极限第八页,共七十七页,编辑于2023年,星期日二.定积分的定义1.定义第九页,共七十七页,编辑于2023年,星期日第十页,共七十七页,编辑于2023年,星期日第十一页,共七十七页,编辑于2023年,星期日曲边梯形的面积变速运动的路程定理1.设f(x)在区间[a,b]上有界,且有有限个第一类间断点,则f(x)在[a,b]上可积.注(1)定积分是一个数值与被积函数有关。(2)定积分的值与区间的分法无关,2.定积分存在的充分条件(3)定积分的值只与区间长度有关,与的取法无关第十二页,共七十七页,编辑于2023年,星期日3.定积分的几何意义第十三页,共七十七页,编辑于2023年,星期日例1利用定积分的定义计算第十四页,共七十七页,编辑于2023年,星期日第十五页,共七十七页,编辑于2023年,星期日三.定积分的性质第十六页,共七十七页,编辑于2023年,星期日对于c在区间[a,b]之内或之外,结论同样成立第十七页,共七十七页,编辑于2023年,星期日第十八页,共七十七页,编辑于2023年,星期日几何解释:在[a,b]上至少存在一点,使曲边梯形的面积等于以为高的一个矩形面积第十九页,共七十七页,编辑于2023年,星期日第二十页,共七十七页,编辑于2023年,星期日定积分与原函数的关系一.变上限的定积分及其导数第二十一页,共七十七页,编辑于2023年,星期日第二十二页,共七十七页,编辑于2023年,星期日第二十三页,共七十七页,编辑于2023年,星期日定理表明:(1)连续函数一定存在原函数(2)把定积分与原函数之间建立起联系二.牛顿-----莱布尼兹公式第二十四页,共七十七页,编辑于2023年,星期日第二十五页,共七十七页,编辑于2023年,星期日第二十六页,共七十七页,编辑于2023年,星期日第四节定积分的换元积分法与分布积分法一.定积分的换元积分法注意:换元的同时一定要换限第二十七页,共七十七页,编辑于2023年,星期日第二十八页,共七十七页,编辑于2023年,星期日第二十九页,共七十七页,编辑于2023年,星期日第三十页,共七十七页,编辑于2023年,星期日第三十一页,共七十七页,编辑于2023年,星期日第三十二页,共七十七页,编辑于2023年,星期日第三十三页,共七十七页,编辑于2023年,星期日第三十四页,共七十七页,编辑于2023年,星期日第三十五页,共七十七页,编辑于2023年,星期日第三十六页,共七十七页,编辑于2023年,星期日二.定积分的分布积分法第三十七页,共七十七页,编辑于2023年,星期日第三十八页,共七十七页,编辑于2023年,星期日第三十九页,共七十七页,编辑于2023年,星期日第四十页,共七十七页,编辑于2023年,星期日第四十一页,共七十七页,编辑于2023年,星期日定积分应用定积分的微元分析法用定积分表示的量U必须具备三个特征:一.能用定积分表示的量所必须具备的特征(3)部分量的近似值可表示为二.微元分析法则U相应地分成许多部分量;用定积分表示量U的基本步骤:(1)U是与一个变量x的变化区间[a,b]有关的量;(2)U对于区间[a,b]具有可加性.即如果把区[a,b]分成许多部分区间,第四十二页,共七十七页,编辑于2023年,星期日根据问题的具体情况,选取一个变量(2)在区间[a,b]内任取一个小区间,求出相应于这个小区间的部分量的近似值.在处的值与的乘积,就把称为量U的微元且记作,即如果能近似地表示为[a,b]上的一个连续函数例如x为积分变量,并确定其变化区间[a,b];第四十三页,共七十七页,编辑于2023年,星期日(3)以所求量U的微元为被积表达式,在区间[a,b]上作定积分,得平面图形的面积一直角坐标情形1.曲边梯形当f(x)在[a,b]上连续时,由曲线y=f(x)和x=a,x=b及x轴所围成的曲边梯形面积就是第四十四页,共七十七页,编辑于2023年,星期日2.一般图形以及两条直线x=a,x=b之间的图形的面积微元为如果函数在[a,b]上连续,且则介于两条曲线第四十五页,共七十七页,编辑于2023年,星期日注意:根据具体的图形特点,也可以选择作为积分变量或者利用图形的对称性简化计算.例1求椭圆的面积(如图).解由对称性,椭圆的面积其中为椭圆在第一象限部分.xyoyxaboxx+dx则图形的面积为第四十六页,共七十七页,编辑于2023年,星期日则例2求由所围图形面积.解两抛物线的交点为(0,0)及(1,1).取x为积分变量,其变化区间为[0,1].由前面讨论可知:(1,1)oyx第四十七页,共七十七页,编辑于2023年,星期日例3求由所围图形面积.解两曲线的交点为(2,-2)及(8,4).根据此图形特点,可以选择y作为积分变量,其变化区间为[-2,4].yx(2,-2)(8,4)图形的面积微元为:从而可得图形面积第四十八页,共七十七页,编辑于2023年,星期日二.极坐标情形1.曲边扇形其中r()在[,]上连续,且r()0.相应于[,+d]的面积微元为则图形面积为or=r()设图形由曲线r=r()及射线=,=所围成.取为积分变量,其变化区间为[,],第四十九页,共七十七页,编辑于2023年,星期日2.一般图形及射线=,=所围图形的面积微元为则面积为o相应于从0到2的一段弧与极轴所围图形的面积.解如图,可视为=0,=2及r=a围成的曲边扇形.则其面积为o由曲线例4求阿基米德螺线r=a(a>0)上第五十页,共七十七页,编辑于2023年,星期日NoM例5求r=1与r=1+cos所围公共面积.解如图,曲线交点为由对称性则而第五十一页,共七十七页,编辑于2023年,星期日三.参数方程情形当曲边梯形的曲边为参数方x=(t),y=(t),且()=a,()=b,在[,]上(t)有连续导数,(t)连续,则曲边梯形面积面积为在例1中,若采用椭圆的参数方程则第五十二页,共七十七页,编辑于2023年,星期日立体的体积一.平行截面面积已知的立体体积点x且垂直于x轴的截面面积.如图,体积微元为dV=A(x)dx,则体积为例1如图,从圆柱体上截下一块楔形体,abx求其体积.取x为积分变量,其变化范围为[a,b].设立体介于x=a,x=b之间,A(x)表示过第五十三页,共七十七页,编辑于2023年,星期日则边长分别为y和ytan.因此如图,过x的截面是直角三角形,解-RRyxoxy第五十四页,共七十七页,编辑于2023年,星期日xyoRh高为h的正劈锥体的体积.底边长为2y,高为h.因此则过x的截面是等腰三角形,解如图,例2求以圆为底,平行且等于底圆直径的线段为顶,第五十五页,共七十七页,编辑于2023年,星期日称为旋转体.则如前所述,可求得截面面积二.旋转体的体积则平面图形绕同平面内一条直线旋转一周而成的立体设旋转体由图1的曲边梯形绕x轴形成.yxaby=f(x)ox图1第五十六页,共七十七页,编辑于2023年,星期日同理,如旋转体由图2的曲边梯形绕y轴形成.ycoxdx=(y)例3求如图直角三角形绕x轴旋转而成的圆锥体的体积.解可求得过点O及P(h,r)的直线方程为由公式得yoxP(h,r)则体积为图2图3第五十七页,共七十七页,编辑于2023年,星期日例4求星形线绕x轴旋转而成的立体体积解由对称性及公式aaxy第五十八页,共七十七页,编辑于2023年,星期日例5求圆心在(b,0),半径为a(b>a)的圆绕y轴旋转而成的环状体的体积.yxoba解圆的方程为,则所求体积可视为曲边梯形绕y轴旋转而成的旋转体的体积之差.分别与直线y=-a,y=a及y轴所围成的则第五十九页,共七十七页,编辑于2023年,星期日例证明:由平面图形绕轴旋转所成的旋转体的体积为柱壳法——就是把旋转体看成是以y轴为中心轴的一系列圆柱形薄壳组成的,即为圆柱薄壳当dx很小时,此小柱体的高看作f(x),以此柱壳的体积作为体积元素,第六十页,共七十七页,编辑于2023年,星期日在区间上柱壳体的体积元素为平面曲线的弧长光滑曲线可应用定积分求弧长.若函数y=f(x)的导函数在区间[a,b]上连续,则称曲线y=f(x)为区间[a,b]上的光滑曲线,第六十一页,共七十七页,编辑于2023年,星期日一.直角坐标情形设光滑曲线方程:可用相应的切线段近似代替.即则弧长微元(弧微分)故弧长为oyxdyabdxy=f(x)取x为积分变量,变化区间为[a,b].[a,b]内任意小区间[x,x+dx]的一段弧长第六十二页,共七十七页,编辑于2023年,星期日例1求曲线相应于x从a到b的一段弧长.解第六十三页,共七十七页,编辑于2023年,星期日例2求的全弧长.解y=y(x)的定义域为,故弧长为:二.参数方程情形设光滑曲线方程:弧长微元则如前所述,第六十四页,共七十七页,编辑于2023年,星期日例4求星形线的弧长.解由对称性及公式第六十五页,共七十七页,编辑于2023年,星期日例4求阿基米德螺线r=a(a>0)上相应于从0到2的一段弧长.解三.极坐标情形设曲线方程:r=r()().化为参数方程:则第六十六页,共七十七页,编辑于2023年,星期日定积分的物理应用一.变力沿直线作功若物体在常力F作用下沿F方向移动s距离,.由x=a移到x=b,可用微元法解决做功问题.dW=F(x)dx则F(x)abxx+dx则W=Fs若物体在变力F(x)作用下沿力的方向取x为积分变量,变化区间为[a,b].相应于任意小区间[x,x+dx]的功的微元第六十七页,共七十七页,编辑于2023年,星期日例1设9.8牛顿的力能使弹簧伸长1厘米,解从而由公式(焦耳)例2形如圆锥台的水桶内盛满了水(如图),解设想将水分成许多薄层,问将全部水吸出需作多少功?(水比重为9800牛顿/立方米)0yx13(3,2)xx+dx求伸长10厘米需作多少功?所以k=980.F=9.8牛顿,而x=0.01米时,已知F=kx,F=980x.吸出各层水所作的功的总和即为所求.第六十八页,共七十七页,编辑于2023年,星期日取x为积分变量,变化区间为则例3一桶水重10kg,由一条线密度0.1kg/m的0yx13(3,2)xx+dx因此功的微元吸出这层水的位移近似于x.的薄层水近似于圆柱,[0,2].相应于任意小区间[x,x+dx]绳子系着,将它从20m深的井里提上来需作多少功?第六十九页,共七十七页,编辑于2023年,星期日解将水桶从井里提上来所作的功为将绳子从井里提上来所作的功,则所作的总功为xo20xx+dx即变力沿直线作的功为第七十页,共七十七页,编辑于2023年,星期日二.静液压力设有一面积为A的平板,水平放置在液体下深度h处,则平板一侧所受压力为N=hA.(为液体比重)则平板一侧所受压力须用微元法解决.取x为积分变量,变化区间为[a,b].oxyabxx+dxy=f(x)近似于水深x处水平放置的长方形窄条所受的压力.相应于[x,x+dx]的窄条所受到的压力如果平板垂直放置在液体下,以如图曲边梯形为例:第七十一页,共七十七页,编辑于2023年,星期日则压力微元为dN=xydx=xf(x)dx因此整个平板所受压力为例4一个横放的半径为R的圆柱形油桶内有半桶油(比重),求一个端

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论