天津天明中学2021-2022学年高二数学理测试题含解析_第1页
天津天明中学2021-2022学年高二数学理测试题含解析_第2页
天津天明中学2021-2022学年高二数学理测试题含解析_第3页
天津天明中学2021-2022学年高二数学理测试题含解析_第4页
天津天明中学2021-2022学年高二数学理测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津天明中学2021-2022学年高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.从装有两个红球和两个黑球的口袋内任取两个球,那么互斥而不对立的两个事件是(

)A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰有一个黑球”与“恰有两个黑球”D.“至少有一个黑球”与“都是红球”参考答案:C略2.双曲线的离心率为

A.

B.2

C.

D.3参考答案:B3.已知椭圆C:+=1,M,N是坐标平面内的两点,且M与C的焦点不重合.若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|=()A.4B.8C.12D.16参考答案:B4.已知随机变量满足ξ~B(n,p),且E(ξ)=12,D(ξ)=,则n和p分别为

()A.16与

B.20与

C.15与

D.15与参考答案:C5.若变量满足约束条件,,则取最小值时,

二项展开式中的常数(

A.

B.

C.

D.参考答案:A6.已知椭圆的两个焦点为F1(﹣,0),F2(,0),P是此椭圆上的一点,且PF1⊥PF2,|PF1|?|PF2|=2,则该椭圆的方程是()A.+y2=1 B.+y2=1 C.x2+=1 D.x2+=1参考答案:A【考点】椭圆的简单性质.【分析】根据已知条件得:,所以,这样即可根据椭圆的定义求出a2,因为c2=5,所以可求出b2,所以椭圆的标准方程就可求出.【解答】解:如图,根据已知条件知:,∵|PF1||PF2|=2;∴=;∴a2=6,b2=6﹣5=1;∴椭圆的标准方程为:.故选:A.7.已知双曲线的左右焦点分别为,过作双曲线的一条渐近线的垂线,垂足为,若的中点在双曲线上,则该双曲线的离心率是(

)A.

B.

C.

D.参考答案:A略8.点P(x,y)是直线x+3y-2=0上的动点,则代数式3x+27y有(

)A.最大值8

B.最小值8

C.最小值6

D.最大值6参考答案:C9.用反证法证明命题“三角形的内角中至少有一个角不大于”时,反设正确的是A、假设三个内角都不大于 B、假设三个内角都大于C、假设三个内角至多有一个大于 D、假设三个内角至多有二个大于参考答案:B10.下列有关命题说法正确的是A.“”是函数为偶函数的充分不必要条件”B.“是“”成立的必要不充分条件C.命题“,使得”的否定是:“,均有”D.命题“若则”的逆否命题为真命题参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.若,则

参考答案:略12.抛物线C的顶点坐标为原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若为的中点,则抛物线C的方程为

参考答案:略13.为了庆祝建厂10周年,某食品厂制作了3种分别印有卡通人物猪猪侠、虹猫和无眼神兔的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,张明购买了5袋该食品,则他可能获奖的概率是________.参考答案:14.设F1、F2分别是椭圆的左、右焦点,P为椭圆上任一点,点M的坐标为(3,1),则|PM|+|PF1|的最小值为

.参考答案:9【考点】椭圆的简单性质.【分析】由题意可知:|PF1|+|PF2|=2a=10,|MF2|=1,|PM|≥|PF2|﹣|MF2|,|PM|+|PF1|≥|PF2|﹣|MF2|+|PF1|≥10﹣1=9,即可求得|PM|+|PF1|的最小值.【解答】解:由题意可知:a=5,b=4,c=3,F2(3,0),连结PF2、MF2,如图,则|PF1|+|PF2|=2a=10,|MF2|=1,∵|PM|≥|PF2|﹣|MF2|,∴|PM|+|PF1|≥|PF2|﹣|MF2|+|PF1|≥10﹣1=9,∴|PM|+|PF1|的最小值9,故答案为:9.15.定积分的值为_________________.参考答案:1略16.已知在四棱锥P﹣ABCD中,PA⊥底面ABCD,底面ABCD是正方形,PA=AB=2,在该四棱锥内部或表面任取一点O,则三棱锥O﹣PAB的体积不小于的概率为.参考答案:【考点】CF:几何概型.【分析】根据题意画出图形,结合图形,利用对应的体积比值求出对应的概率.【解答】解:如图所示,AD、BC、PC、PD的中点分别为E、F、G、H,当点O在几何体CDEFGH内部或表面上时,V三棱锥O﹣PAB≥;在几何体CDEFGH中,连接GD、GE,则V多面体CDEFGH=V四棱锥G﹣CDEF+V三棱锥G﹣DEH=,又V四棱锥P﹣ABCD=,则所求的概率为P==.故答案为:17.在下列函数中,当x取正数时,最小值为2的函数序号是.(1)y=x+;(2)y=lgx+;(3)y=;(4)y=x2﹣2x+3.参考答案:(4)考点:基本不等式在最值问题中的应用.专题:函数的性质及应用.分析:根据基本不等式,对钩函数的单调性分别求出最值,及范围即可判断.解答:解:∵x>0,∴y=x+=4,(x=2时等号成立),∵y=lgx+;∴gx+≥2(x>1)或lgx+≤﹣2,(0<x<1)∵y=(x>0),∴>2,∵y=x2﹣2x+3,(x>0),∴当x=1时,最小值为1﹣2+3=2,最小值为2的函数序号(4),故答案为:(4)点评:本题考察了函数的单调性,基本不等式的应用属于中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在经济学中,函数的边际函数M定义为M=,某公司每月最多生产100台报警系统装置,生产台的收入函数为(单位:元),其成本函数(单位:元),利润是收入与成本之差。

(1)求利润函数及边际利润函数M;

(2)利润函数与边际利润函数M是否具有相同的最大值?参考答案:19.已知a∈R,函数f(x)=4x3-2ax+a.(1)求f(x)的单调区间;(2)证明:当0≤x≤1时,f(x)+|2-a|>0.参考答案:由题意得f′(x)=12x2-2a.当a≤0时,f′(x)≥0恒成立,此时f(x)的单调递增区间为(-∞,+∞).当a>0时,,此时函数f(x)的单调递增区间为和.单调递减区间为.证明:由于0≤x≤1,故当a≤2时,f(x)+|a-2|=4x3-2ax+2≥4x3-4x+2.当a>2时,f(x)+|a-2|=4x3+2a(1-x)-2≥4x3+4(1-x)-2=4x3-4x+2.设g(x)=2x3-2x+1,0≤x≤1,则g′(x)=6x2-2=,于是在x∈(0,1)上,当x变化时,g′(x),g(x)的变化情况如下表:x01g′(x)

-0+

g(x)1单调递减极小值单调递增1所以,g(x)min=>0.所以当0≤x≤1时,2x3-2x+1>0.故f(x)+|a-2|≥4x3-4x+2>0.20.已知椭圆的焦距为,短半轴的长为2,过点斜率为1的直线与椭圆交于两点.(1)求椭圆的方程;(2)求弦的长.参考答案:(1);(2).试题分析:(1)由椭圆的焦距为,短半轴的长为,求得的值,进而得到的值,即可得到椭圆的方程;(2)设,把直线的方程代入椭圆的方程,利用韦达定理和弦长公式,即可求解弦的长.考点:椭圆的方程;弦长公式.【方法点晴】本题主要考查了椭圆的方程及弦长的问题,其中解答中涉及到椭圆的标准方程及其简单的几何性质、直线与圆锥曲线的弦长公式的应用,注重考查了学生分析问题和解答问题的能力,以及推理与运算能力,此类问题的解答中把直线的方程与圆锥曲线方程联立,利用方程的根与系数的关系是解答的关键,属于中档试题.21.(12分)二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1.

⑴求f(x)的解析式;⑵在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.参考答案:解:(1)设f(x)=ax2+bx+c,由f(0)=1得c=1,故f(x)=ax2+bx+1.

∵f(x+1)-f(x)=2x,∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x.

即2ax+a+b=2x,所以,∴f(x)=x2-x+1.(2)由题意得x2-x+1>2x+m在[-1,1]上恒成立.即x2-3x+1-m>0在[-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论