版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年湖北省黄冈市宜林中学高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设的三边长分别为,的面积为,,若,,则( )A.{Sn}为递减数列
B.{Sn}为递增数列 C.{S2n-1}为递增数列,{S2n}为递减数列 D.{S2n-1}为递减数列,{S2n}为递增数列参考答案:B略2.“”是“”的
(
)A.充要条件
B.充分不必要条件 C.必要不充分条件
D.既不充分又不必要条件参考答案:B略3.已知函数,则其导数
A.
B.
C.
D.参考答案:D4.在平面直角坐标系中,由坐标轴和曲线所围成的图形的面积为(
)A.2 B. C.3 D.4参考答案:C【分析】根据余弦函数图象的对称性可得,求出积分值即可得结果.【详解】根据余弦函数图象的对称性可得,故选C.【点睛】本题主要考查定积分的求法,考查数学转化思想方法,属于基础题.5.在等差数列中,若,则的前项和(
)A.
B.
C.
D.参考答案:B6.用反证法证明命题:“三角形三个内角至少有一个大于或等于60°”时,应假设()A.三个内角都大于或等于60°B.三个内角都小于60°C.三个内角至多有一个小于60°D.三个内角至多有两个大于或等于60°参考答案:B【考点】R9:反证法与放缩法.【分析】写出原结论的命题否定即可得出要假设的命题.【解答】解:原命题的否定为:三角形三个内角都小于60°,故选B.7.函数f(x)=x3+x﹣3的一个零点所在的区间为()A.(0,) B.(,1) C.(1,) D.(,2)参考答案:C【考点】二分法求方程的近似解.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】根据函数的解析式求函数的值,再根据判断函数的零点的判定定理,求得函数零点所在的区间.【解答】解:由函数的解析式得f(1)=﹣1<0,f()=>0,∴f(1)f()<0,根据函数零点的判定定理可得函数零点所在的区间为(1,),故选:C.【点评】本题主要考查函数的零点的判定定理的应用,根据函数的解析式求函数的值,判断函数的零点所在的区间的方法,属于基础题.8.下图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,中间的数字表示得分的十位数,下列对乙运动员的判断错误的是
(
)
、乙运动员得分的中位数是28
、乙运动员得分的众数为31、乙运动员的场均得分高于甲运动员
、乙运动员的最低得分为0分
参考答案:D9.准线为的抛物线标准方程是(
)A.
B.
C.
D.参考答案:A10.直线的倾斜角为
(
)A.
B. C.
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.在△ABC中,已知a,b,c分别为角A,B,C所对的边,S为△ABC的面积.若向量=(4,a2+b2﹣c2),=()满足∥,则∠C=.参考答案:【考点】余弦定理;平行向量与共线向量.【分析】通过向量的平行的坐标运算,求出S的表达式,利用余弦定理以及三角形面积,求出C的正切值,得到C的值即可.【解答】解:由∥,得4S=(a2+b2﹣c2),则S=(a2+b2﹣c2).由余弦定理得cosC=,所以S=又由三角形的面积公式得S=,所以,所以tanC=.又C∈(0,π),所以C=.故答案为:.12.若命题,则是_________;参考答案:13.设,若,则
.参考答案:1试题分析:因为,所以,所以。考点:1分段函数;2定积分。14.已知二次函数,当1,2,…,,…时,其抛物线在x轴上截得的线段长依次为,则=
参考答案:略15.若命题“,使”是假命题,则实数的取值范围为
▲
.参考答案:略16.某公司13个部门接受的快递的数量如茎叶图所示,则这13个部门接受的快递的数量的中位数为.参考答案:10【考点】茎叶图.【分析】利用茎图的性质和中位数的定义直接求解.【解答】解:由茎叶图的性质得:某公司13个部门接受的快递的数量按从小到大的顺序排的第7个数为中位数,∵第7个数是10,∴这13个部门接收的快递的数量的中位数为10.故答案为:10.【点评】本题考查中位数的求法,是基础题,解题时要认真审题,注意茎叶图的性质和中位数的定义的合理运用.17.若a,b,c成等比数列,则函数f(x)=ax2+bx+c的图象与x轴交点的个数为.
参考答案:0略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在一次抽奖活动中,有甲、乙等6人获得抽奖的机会.抽奖规则如下:主办方先从6人中随机抽取两人均获奖1000元,再从余下的4人中随机抽取1人获奖600元,最后还从这4人中随机抽取1人获奖400元.(1)求甲和乙都不获奖的概率;(2)设X是甲获奖的金额,求X的分布列和数学期望.参考答案:【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(1)设“甲和乙都不获奖”为事件A,由相互独立事件概率乘法公式能求出甲和乙都不获奖的概率.(2)X的所有可能的取值为0,400,600,1000,分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】(满分12分)解:(1)设“甲和乙都不获奖”为事件A,…则P(A)==,∴甲和乙都不获奖的概率为.…(2)X的所有可能的取值为0,400,600,1000,…P(X=0)=,P(X=400)=?=,P(X=600)==,P(X=1000)==,…∴X的分布列为X04006001000P
∴E(X)==500.…19.数列是公比为的等比数列,且是与的等比中项,前项和为.数列是等差数列,,前项和满足为常数,且.(Ⅰ)求数列的通项公式及的值;(Ⅱ)比较与的大小.参考答案:解(Ⅰ)由题意,即(2分)解得,∴(4分)又,即(6分)解得
或(舍)∴(8分)(Ⅱ)由(Ⅰ)知∴①(10分)又,∴②(13分)由①②可知(14分)略20.如图,在四棱锥P—ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA垂直于平面ABCD,E为PD的中点,PA=2AB.(1)若F为PC的中点,求证:PC⊥平面AEF;(2)求证:EC∥平面PAB.参考答案:证明(1)由题意得PA=CA,∵F为PC的中点,∴AF⊥PC.∵PA⊥平面ABCD,∴PA⊥CD.∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC,∴CD⊥PC.∵E为PD的中点,F为PC的中点,∴EF∥CD,∴EF⊥PC.∵AF∩EF=F,∴PC⊥平面AEF.(2)方法一如图,取AD的中点M,连接EM,CM.则EM∥PA.∵EM?平面PAB,PA?平面PAB,∴EM∥平面PAB.在Rt△ACD中,∠CAD=60°,MC=AM,∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.∵MC?平面PAB,AB?平面PAB,∴MC∥平面PAB.∵EM∩MC=M,∴平面EMC∥平面PAB.∵EC?平面EMC,∴EC∥平面PAB.方法二如图,延长DC、AB,设它们交于点N,连接PN.∵∠NAC=∠DAC=60°,AC⊥CD,∴C为ND的中点.∵E为PD的中点,∴EC∥PN.∵EC?平面PAB,PN?平面PAB,∴EC∥平面PAB.略21.由甲、乙、丙三个人组成的团队参加某项闯关游戏,第一关解密码锁,3个人依次进行,每人必须在1分钟内完成,否则派下一个人.3个人中只要有一人能解开密码锁,则该团队进入下一关,否则淘汰出局.根据以往100次的测试,分别获得甲、乙解开密码锁所需时间的频率分布直方图.(1)若甲解开密码锁所需时间的中位数为47,求a、b的值,并分别求出甲、乙在1分钟内解开密码锁的频率;(2)若以解开密码锁所需时间位于各区间的频率代替解开密码锁所需时间位于该区间的概率,并且丙在1分钟内解开密码锁的概率为0.5,各人是否解开密码锁相互独立.①求该团队能进入下一关的概率;②该团队以怎样的先后顺序派出人员,可使所需派出的人员数目X的数学期望达到最小,并说明理由.参考答案:(1),,甲、乙在1分钟内解开密码锁的频率分别是0.9,0.7;(2)①0.985;②先派出甲,再派乙,最后派丙.【分析】(1)根据频率分布直方图中左右两边矩形面积均为0.5计算出中位数,可得出a、b的值,再分别计算甲、乙在1分钟内解开密码锁的频率值;(2)①利用独立事件概率的乘法公式可计算出所求事件的概率;②分别求出先派甲和先派乙时随机变量的数学期望,比较它们的大小,即可得出结论。【详解】(1)甲解开密码锁所需时间的中位数为47,,解得;
,解得;
∴甲在1分钟内解开密码锁的频率是;
乙在1分钟内解开密码锁的频率是;(2)由(1)知,甲在1分钟内解开密码锁的频率是0.9,乙是0.7,丙是0.5,且各人是否解开密码锁相互独立;①令“团队能进入下一关”的事件为,“不能进入下一关”的事件为,,
∴该团队能进入下一关的概率为;②设按先后顺序自能完成任务的概率分别p1,p2,p3,且p1,p2,p3互不相等,根据题意知X的取值为1,2,3;则,,,,,
若交换前两个人的派出顺序,则变为,由此可见,当时,交换前两人的派出顺序可增大均值,应选概率大的甲先开锁;若保持第一人派出的人选不变,交换后两人的派出顺序,,∴交换后的派出顺序则变为,当时,交换后的派出顺序可增大均值;所以先派出甲,再派乙,最后派丙,这样能使所需派出的人员数目的均值(数学期望)达到最小.【点睛】本题考查频率分布直方图中位数的计算、离散型随机变量分布列与数学期望,在作决策时,可以依据数学期望和方差的大小关系来作出决策,考查分析问题的能力,属于难题。22.如图,长方体ABCD﹣A1B1C1D1中,AA1=,AB=1,AD=m,E为BC中点,且∠AEA1恰为二面角A1﹣ED﹣A的平面角.(1)求证:平面A1DE⊥平面A1AE;(2)求异面直线A1E、CD所成的角;(3)设△A1DE的重心为G,问是否存在实数λ,使得=λ,且MG⊥平面A1ED同时成立?若存在,求出λ的值;若不存在,说明理由.参考答案:【考点】直线与平面垂直的判定;异面直线及其所成的角.【专题】计算题;空间位置关系与距离.【分析】(1)根据二面角的平面角的定义,可得二面角的棱垂直于平面角所在的平面,得线面垂直,再由线面垂直?面面垂直.(2)建立空间直角坐标系,给出相关点与向量的坐标,根据AE⊥DE,求出m的值,再求向量夹角的余弦值.(3)根据=λ,写出M的坐标,求出的坐标,根据条件MG⊥DE,MG⊥EA1确定是否存在λ.【解答】解:(1)证明:∵∠AEA1为二面角A1﹣ED﹣A的平面角∴A1E⊥ED,AE⊥ED,A1E∩AE=E,∴ED⊥平面A1AE,DE?平面A1DE,∴平面A1DE⊥平面A1AE.(2)如图建立空间直角坐标系,则A(0,0,0),A1(0,0,),B(1,0,0),D(0,m,0),E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030全球多人赛车游戏行业调研及趋势分析报告
- 2025文旅项目新年穿越之旅宋韵中国年主题活动策划方案
- 第10讲 俄罗斯(解析版)
- 2025个人财产信托合同的范本
- 2025抵押借款的标准合同范本
- 2025水毁工程监理合同
- 海洋工程装备研发生产合同
- 2025企业承包经营合同书模板
- 提高财务管理能力的技巧
- 提高回答问题的技巧主题班会
- 2023风电机组预应力混凝土塔筒与基础结构设计标准
- 游戏账号买卖合同
- 小学语文阅读教学落实学生核心素养方法的研究-结题报告
- 一年级的成长历程
- 2024年南京铁道职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 正月十五元宵节介绍课件
- 病毒性肺炎疾病演示课件
- 中考英语语法填空专项练习附答案(已排版-可直接打印)
- 口腔医学中的人工智能应用培训课件
- 自然辩证法概论(新)课件
- 基层医疗机构基本情况调查报告
评论
0/150
提交评论