新人教版七年级下第八章二元一次方程组导学案_第1页
新人教版七年级下第八章二元一次方程组导学案_第2页
新人教版七年级下第八章二元一次方程组导学案_第3页
新人教版七年级下第八章二元一次方程组导学案_第4页
新人教版七年级下第八章二元一次方程组导学案_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE4课题:8.1二元一次方程组【学习目标】1、了解二元一次方程的概念,能把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,能举例说明二元一次方程及其中的已知数和未知数;2、理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。【学习重点】1、二元一次方程(组)的含义;2、用一个未知数表示另一个未知数。【学习难点】检验一对数是否是某个二元一次方程(组)的解;一、【自主学习】二元一次方程概念1.我们来看一个问题:篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分。某队在10场比赛中得到16分,那么这个队胜负场数应分别是多少?思考:以上问题包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?______场数+______场数=总场数;______积分+______积分=总积分,这两个条件可以用方程x+y=10,2x+y=16表示。观察:这两个方程有什么特点?与一元一次方程有什么不同?归纳:①定义___________________________________________________叫做二元一次方程2.二元一次方程的左边和右边都应是整式②二元一次方程的一般形式:ax+by+c=0(其中a≠0、b≠0且a、b、c为常数)注意:1.要判断一个方程是不是二元一次方程,一般先要把它化成二元一次方程的一般形式,再根据定义判断。③二元一次方程的解:使二元一次方程两边的值_______的两个未知数的_____叫做二元一次方程的解。二、【合作探究】什么是二元一次方程组和它的解二元一次方程组定义:含有未知数,含有每个未知数的项的次数都是,并且一共有方程,像这样的方程组叫做二元一次方程组。1.已知、都是未知数,判别下列方程组是否为二元一次方程组?并说明理由。①②③④2、把3(x+5)=5(y-1)+3化成ax+by=c的形式为_____________。3、方程3x+2y=6,有______个未知数,且未知数都是___次,因此这个方程是_____元_____次方程。4、下列式子①3x+2y-1;②2(2-x)+3y+5=0;③3x-4y=z;④x+xy=1;⑤y²+3y=5x;⑥4x-y=0;⑦2x-3y+1=2x+5;⑧EQ\F(1,x)+EQ\F(1,y)=7中;是二元一次方程的有_________(填序号)5、若x²m-1+5y3n-2m=7是二元一次方程,则m=______,n=_______。6、方程mx−2y=3x+4是关于x、y的二元一次方程,则m的值范围是(

)A.m≠0B.m≠−2C.m≠3D.m≠47、已知是方程3x-my=1的一个解,则m=__________。8、已知方程,若x==6,则y=_____;若y=0,则x=_____;当x=____时,y=4.9、已知下列三对数:;;满足方程x-3y=3的是_______________;满足方程3x-10y=8的是__________;方程组的解是________________。三、【达标测评】(一)、精心选一选1.下列方程组中,不是二元一次方程组的是()A. B. C. D.2.已知的值:①②③④其中,是二元一次方程的解的是()A.① B.② C.③ D.④3.若方程有一解则的值等于()A.—B. C. D.—4.已知一个二元一次方程组的解是则这个方程组是()A. B.C. D.8.2消元——解二元一次方程组的解法(1)导学案【学习目标】会运用代入消元法解二元一次方程组.【学习重、难点】1、会用代入法解二元一次方程组。2、灵活运用代入法的技巧.【学习过程】一、【学前准备】1、已知,当=1时,=;当=2时,=.2、将方程5x-6y=12变形:若用含y的式子表示x,则x=______,当y=-2时,x=_______;若用含x的式子表示y,则y=______,当x=0时,y=________。步行各用了多少时间?分析:找两个等量关系:(1)+=总时间(小时)(2)+=总路程(千米)解:达标检测某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?分析:等量关系(1)(2)2、小方、小程两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行,小方3小时可追上小程。两人的平均速度各是多少?分析:等量关系(1)(2)五、课堂小结:今天你学到了什么?8.2消元——二元一次方程组的解法(3)导学案【学习目标】(1)用加减法消元法求未知数系数相等或互为相反数的二元一次方程组的解。(2)学会使用方程变形,再用加减消元法解二元一次方程组。【学习重、难点】1、当未知数系数相等或互为相反数时,用加减法消元法解二元一次方程组。2、两个方程相减消元时,对被减的方程各项符号要做变号处理。3、方程变形为较恰当的形式,然后加减消元。一、【探究学习】1、思考:怎样解下面二元一次方程组呢?2、观察上面的方程组:未知数y的系数未知数y的系数,若把方程(1)和方程(2)相加可得:(注:左边和左边相加,右边和右边相加。)()+()=+12x=24发现二:如果未知数的系数互为则两个方程左右两边分别可以消去一个未知数.未知数x的系数,若把方程(1)和方程(2)相减可得:(注:左边和左边相减,右边和右边相减。)()-()=-14y=14发现一:如果未知数的系数相同则两个方程左右两边分别相减也可消去一个未知数.归纳:两个二元一次方程组中,同一个未知数的系数或时,把这两个方程的两边分别或,就能消去这个未知数,得到一个方程,这种方法就叫做加减消元法。3、用加减消元法解下列方程组,把下面的解题过程补充完整①②解:由eq\o\ac(○,1)②得解:由eq\o\ac(○,1)②得..==将=代入①,得 将=代入①,得==所以原方程组的解是所以原方程组的解是二、【自我尝试】:用加减消元法解下列方程组⑴⑵⑷⑸挑战自我】联系上面的解法,怎样用加减消元法解方程组两边都乘以2,得到:(3)观察:(2)和(3)中的系数,将这两个方程的两边分别,就能得到一元一次方程。◆基本思路:将将原方程组的两个方程化为有一个未知数的系数相同或者相反的两个方程,再将两个方程两边分别◆基本思路:将将原方程组的两个方程化为有一个未知数的系数相同或者相反的两个方程,再将两个方程两边分别相减或相加,消去其中一个未知数,得到一元一次方程。(3)(1)+(3)得:a=将a=代入①得b=所以原方程的解是归纳:用加减消元法解二元一次方程的一般步骤:(1)变形(2)加减求解(3)回代求解(4)写解四、【达标测评】:用加减消元法解下列方程组(1)(2)五、课堂小结,布置作业(1)小结:今天你学到了什么?(2)作业:课本98页习题8.2第3题8.2消元——二元一次方程组的解法(4)导学案【学习目标】1.熟练掌握用加减消元法解二元一次方程组2.根据实际问题列出二元一次方程组,求出二元一次方程组的解3.能根据方程组的特点选择比较简便的消元方法解方程组【学习重、难点】根据实际问题列出二元一次方程组,并能根据方程组的特点选择比较简便的消元方法解方程组一、【复习】(1)列二元一次方程组解决实际问题的主要步骤有哪些?(2)用两种方法解下列方程组方法1:代入消元法方法2:加减消元法二、【探究学习】问题1:2台大收割机和5台小收割机同时工作2h共收割小麦3.6hm,3台大收割机和2台小收割机同时工作5h共收割小麦8hm.。1台大收割机和1台小收割机每小时各收割小麦多少公顷?分析:(1)列方程或方程组解应用题的关键是什么?(2)本题的等量关系有几个?分别是:①+=3.6②+=8如果设1台大收割机每小时收割小麦公顷,1台小收割机每小时收割小麦公顷,则2台大收割机1小时收割小麦公顷,2台大收割机2小时收割小麦公顷;5台小收割机1小时收割小麦公顷,5台小收割机2小时收割小麦公顷。3台大收割机1小时收割小麦公顷,3台大收割机5小时收割小麦公顷;2台小收割机1小时收割小麦公顷,2台小收割机5小时收割小麦公顷。解:设三、【巩固训练】1、运输360吨化肥,装载了6节火车车厢和15辆汽车;运输440吨化肥,装载了8节火车车厢和10辆汽车,每节火车车厢与每辆汽车平均各装多少吨化肥?分析:关键找①②2、一条船顺流航行,每小时行20千米;逆流航行,每小时行16千米。求船在静水中的速度与水的流速。分析:顺水速度=+逆水速度=—四、【一显身手】某工厂第一车间工人人数比第二车间工人人数的2倍少10人,若从第一车间调5人到第二车间,那么两个车间的人数一样多。问原来每个车间各有多少人?等量关系1;等量关系2五、【课堂小结】1、解二元一次方程组有哪几种方法?2、列方程组解应用题的一般步骤有哪些?3、这节课你学到了水流问题的速度公式是什么?课题:8.3实际问题与二元一次方程组(1)【学习目标】1、会借助二元一次方程组解决简单的实际问题。2、进一步体会“分析数量关系,设未知数,列方程组,解方程组和检验结果”的过程,学会通过精确计算验证估计值的准确程度。【学习重、难点】1、能根据题意列二元一次方程组;2、正确找出问题中的两个等量关系一、【复习】1、解二元一次方程组有哪些方法?2、列二元一次方程组解决实际问题的一般步骤是什么?二、【自主学习】课本99页探究11、本题中有哪些已知量?哪些未知量?2、本题中等量关系有哪些?分别是:①()②()解:设平均每只母牛和每只小牛1天各需用饲料为xkg和ykg根据题意列方程,得解这个方程组得答:每只母牛和每只小牛1天各需用饲料为()和(),饲料员李大叔估计每天母牛需用饲料18—20千克,每只小牛一天需用7到8千克与计算()出入。(“有”或“没有归纳:1.列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的()2.一般来说,有几个未知量就必须列几个方程,所列方程必须满足:(1)方程两边表示的是()量;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论