计算机在材料化学中地应用知识点总结材料_第1页
计算机在材料化学中地应用知识点总结材料_第2页
计算机在材料化学中地应用知识点总结材料_第3页
计算机在材料化学中地应用知识点总结材料_第4页
计算机在材料化学中地应用知识点总结材料_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

千里之行,始于足下让知识带有温度。第第2页/共2页精品文档推荐计算机在材料化学中地应用知识点总结材料计算机在材料化学中的应用

第一章绪论

1.工程模拟:在模型的基础上观看客观世界的各种系统并举行试验讨论的技术。

2.模型的构造

(1)模型的分类:物理模型(动、静);描述性模型;数学模型(动、静;数值法、解析法)(2)模型的构造办法:

a.理论分析;

b.类比分析;

c.数据分析:使用系统回归分析的办法利用若干能表征系统逻辑,描述系统状态的数据来建立系统的数学模型。

d.人工假设:基于对系统的了解,将系统中不确定的因素假定为若干组确定的取值,而建立系统模型。

3.过程模拟(流程模拟)

a.稳态流程模拟;

b.动态流程模拟:利用计算机技术、图形原理和成像办法在屏幕上以动态、直观、立体、彩色的方式显示物体运动的过程模拟。

4.工程模拟讨论的步骤:

问题描述;

设定目标和总体计划;

构造模型;

数据收集;

编制程序;

程序验证;

模型确认;

试验确认。

5.相关英文简称

CAD:计算机辅助设计。

CAM:计算机辅助创造。

CAPP:计算机辅助工艺过程设计(computeraidedprocessplanning)。

在化学领域CAPP:计算机辅助合成路线设计。

DCS:簇拥控制系统。

6.分子模拟的办法中主要有四种:量子力学办法、分子力学办法、分子动力学办法、分子蒙特卡洛办法。

7.分子模拟法是用计算机以原子水平的分子模型来模拟分子的结构和行为,进而模拟分子系统的各种物理与化学性质。(定义)

8.分子模拟办法与高分子理论和材料设计的关系

其次章数值计算

方程求根

1.二分法

原则:保持新区间两端的函数值异号,对分n次得到第n个区间的长度为最初区间长度(x1-x0)的1/2n,在误差允许范围内,取In的中点为方程的根,则误差小于1/2(n+1)(x1-x0),这种对分区间,不断缩小根的搜寻范围的办法叫二分法。

此法容易、迅速、不易丢根。

二分法求根原则(跳出条件):

(1)函数f(x)的肯定值小于指定的e1;

(2)最后的小区间的一半宽度小于指定的自变量容差e2。

二分法函数:

Voidroot(floata,floatb,int*n,floatfa,floatfb,floate1,floate2,floatrt[20])

{floata0,f0;a0=(a+b)/2;f0=f(a0);

While((fabs(a-b)>e2)fa=f0;}

If(f0*fb>0){b=a0;fb=f0}

a0=(a+b)/2;f0=f(a0);

}

*n=*n+1;rt[*n]=a0;

}

弦截法求根:不取区间的中点,而取AB与X轴的交点为根的估算值。

优点:比本来趋近根的速度快

2.迭代法

办法概述:二分法和弦截法实质上就是迭代法,在迭代的每一步都是利用两个初始的“x”去求一个新的“x”值,能否在迭代的每一步只用一个“x”值去求新的“x”呢?这就是一点迭代法,通常简称为迭代法。

3牛顿法

办法原理:将f(x)在x=x0附近按泰勒级数绽开;

f(x)=f(x0)+(x-x0)f′(x0)+

!2)0

(2

x

x

f〞(x0)+…

因x与x0相差很小,故可略去含平方项的高次项得:f(x0)+(x-x0)f′(x0)=0x=x0-

)

0()

0(xfxf'牛顿法特点:收敛速度比其他办法快得多。但该法对f(x)函数本身的性质和初值x0的选区

有一定的要求,挑选不当,简单发散或丢根。4高斯消去法

(1)获得消元上三角矩阵

a1j=a1j/a11j:1~n+1

aij=aij–ai1·a1ji=2…n;j=1…n+1

(2)k-1次消元后,举行k次消元

akj=akj/akk;j=k…n-1

aij=aij–aik·akj;j=k…n-1;i=k+1…n

(3)高斯消去法主函数

for(k=0;k=k;j--)a[k][j]=a[k][j]/a[k][k];for(i=k+1;i=k;j--)

a[i][j]=a[i][j]-a[i][k]*a[k][j];}

(4)结果总结

xi=ai,n+1–∑+=n

ijxjaij1

)*(

5.怎样推断一条直线与各原始数据的散点最为逼近呢?常用的推断标准是“残差平法和最小”。残差:测量值与回归值的差。

第i点的残差为δi=yi–(a+b·xi),则残差平方和可以表示为Q=

∑=m

ii

1

=∑=?--m

iiixbay1

2)(“平方”也称为二乘,因此根据残差平方和最小

的原则求回归线的办法称为最小二乘法。当回归线是惟独一个自变量x和一个应变量y的直线时,该法称为一元线性最小二乘法。6.数值积分与微分方程的数值解

(1)最基本的数值积分法:梯形法、辛普森法及高斯法。(2)欧拉法求微分方程的数值解

dx

dy

=f(x,y)初值条件x=x0时y=y0。数值解法就是在点x1,x2,…xn上求解未知数y(x)的近似值。其中xi=x0+ih(i=1,2,…,n),h是积分步长,是相邻两点间距。f(x,y)称为微分方程的右函数。

将微分方程两边积分,得到

dxdx

dy

xixi

?

+1

=?+1),(xixidxyxf

y(xi+1)=y(xi)+

?

+1

))(,(xixi

dxxyxf

当x>x0时,y(x)是未知的,因此右边的积分仍求不出,为此把小区间[xi,xi+1]上的

f(x,y)近似得看成是常数f(xi,y(xi)).这样将微分方程两边积分,得到

y(xi+1)≈y(xi)+f(xi,y(xi))·(xi+1-xi)

=y(xi)+hf(xi,y(xi)),i=0,1,2,…n-1

此处给出由y(xi)求y(xi+1)的近似值的办法,这种办法称为欧拉法。

当i=0时,公式为y(x1)=y(x0)+hf(x0,y(x0)),y(x0)是初始条件,认为它是精确     的,点x1处的切线上的y值记为y′.y′=y0+hf(x0,y0)

7.预测—校正法求微分方程组的数值解

办法说明:欧拉法被积函数即微分方程的右函数采纳了下限的函数值,如用梯形法,即采纳下限与上限两处右函数的平均值,则截断误差将大大下降,这时,积分表达式为

?

+1

),(xixi

dxyxf≈

2

h

[f(xi,yi)+f(xi+1,yi+1)]用欧拉法先算出yi+1的估算值,再算出f(xi+1,yi+1)的近似值,进一步再求较精确的yi+1普通式yi+1=yi+

2

h

[f(xi,yi)+f(xi+1,y′i+1)]y′i+1=yi+hf(xi,yi)

当i=0

时,y=y0+2

h[f(x0,y0)+f(x0+h,y′)]

y′1=y0+h·f(x0,y0)

在数学上,把由y0,h和f(x0,y0)由y′(或由yi,h和f(xi,yi)求y′i+1)的过程称为预测;把由y′(或y′i+1)进一步求比较精确的y或yi+1的过程称为校正。

高斯牛顿法简化框图:

量子力学计算办法

1.材料设计的第一性原理(自然界所听从的原理)

牛顿力学、电动力学和相对论、量子力学和测不准原理、pauli不相容原理

从第一性原理动身,针对实际材料和所讨论的问题举行数值计算,在处理问题时要做合理的近似,提出简化模型,利用薛定谔方程计算材料系统电子浓度和系统的基态能量。

2.分子轨道计算办法包括从头计算与半阅历量子化学计算。量子化学从头算(abinitio)办法仅仅利用普朗克常量、电子质量、电量三个基本物理常数以及元素的原子序数

3.三个基本近似

(1)非相对论近似

(2)Born-Oppenheimer近似(绝热近似)(3)单电子近似

4.原子单位

长度:波尔半径a

0=h2/4∏2m

e

e2=0.53?

能量:1hartree=e2/a

=27.21eV=2625.4KJ/mol

意义:距离为a

的两个电子的排斥能

质量:m

e

=1;e=1

5.基组

(1)Roothann方程的分子轨道是由原子轨道线性组合的,成原子轨道集合为基组(basicset)

(2)主要的基函数类型有三种:类氢离子轨道,Slater型轨道(STO)与Gaussian

型轨道(GTO),后者有时也称为Gaussian型函数(GTF)

(3)STO-nG基组以n个GTO基组组合起来表示一个STO的基组,称为STO-nG基组。

(4)n-31G基组它将原子的内层轨道以STO-nG形式表示,而价层轨道用ζ1和ζ2(STO)表示,ζ1以3个GTO,ζ2以1个GTO来表示。

量子化学计算办法总结

量子化学计算办法使用前提是真空状态的孤立分子、离子和原子簇等。离开这一前提往往会故意想不到的误差。

Abinitio

主要提出者:Hartree,Fork,Roothann等

主要特点:不借助于阅历参数,计算有较高的精确性,但计算时光长,需较大的磁盘空间和内存。

HMO

主要提出者:Huckel

主要特点:最容易的量子化学计算办法,对于平面的共轭分子处理很胜利。

EHMO

主要提出者:HoffmanR.

主要特点:能考虑所有价电子,但彻低忽视电子互相作用。

PCILO

主要提出者:Dinner

主要特点:基于CNDO近似,采纳微扰组态互相作用的办法,主要用于生物分子的计算。

主要提出者:Slater

主要特点:主要用于原子簇和协作物的计算,优点是计算省时,结果亦抱负,缺点是只能得到多重态平均能量,对有孤对电子的平衡几何构型计算很差。

CNDO/2,INDO

主要提出者:PopleJ.A.

主要特点:对平衡几何构型、偶极矩等的计算很抱负,但对电离势、结合能、拉伸力常数的

计算与试验值差距较大。

MINDO/3

主要提出者:DewarM.J.S.

主要特点:在计算分子基态性质方面如生成热、键长、键角、第一电离势、偶极矩等较为满

意。

MNDO

主要提出者:DewarM.J.S.

主要特点:多数基态性质计算MNDO比MINDO/3平均肯定误差大约削减一半。AM1

主要提出者:DewarM.J.S.

主要特点:参量化固定,对基态分子的计算比MNDO法有全面改进,能正确处理氢键。PM3

主要提出者:StewartJ.J.P

主要特点:基于MNDO的新参量化办法,对基态分子的计算比AM1有进一步提高。

分子空间能

1.分子的空间能Es可表示为:Es=Ec+Eb+Et+Enb+…

其中Ec是键的伸缩能,Eb是键角的弯曲能,Et是键的二面角的扭转能,Enb是非键作用能,它包括VanderWaals作用能、偶极(电荷)作用能,氢键作用能等等。

2.位能函数描述了各种形式的互相作用力,对分子位能的影响,它的有关参数、常数和表

达式通常称为力场。

3.描述分子结构的内坐标有4种:键伸缩内坐标、键角弯曲内坐标、面外弯曲内坐标和二

面角扭转内坐标。

4.COMPASS力场是第一个出自量子力学从头算的力场。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论