版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省吉安市梅塘中学2022年高三数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在等差数列中,,则此数列前13项的和为……………(
)A.
B.
C.
D.参考答案:C2.下列有关命题的说法正确的是
A.命题“若,则”的否命题为:“若,则”.B.“”是“”的必要不充分条件.C.命题“存在使得”的否定是:“对任意均有”.D.命题“若,则”的逆否命题为真命题.参考答案:D3.某几何体的三视图如图所示,该几何体的体积为(
)A.
B.
C.
D.参考答案:D4.设是虚数单位,若复数是纯虚数,则的值为()A.
B.
C.1 D.3参考答案:D5.三棱锥P﹣ABC中,PA⊥平面ABC,AC⊥BC,AC=BC=1,PA=,则该三棱锥外接球的表面积为(
) A.5π B. C.20π D.4π参考答案:A考点:球的体积和表面积.专题:空间位置关系与距离;球.分析:根据题意,证出BC⊥平面SAB,可得BC⊥PB,得Rt△BPC的中线OB=PC,同理得到OA=PC,因此O是三棱锥P﹣ABC的外接球心.利用勾股定理结合题中数据算出PC=,得外接球半径R=,从而得到所求外接球的表面积解答: 解:取PC的中点O,连结OA、OB∵PA⊥平面ABC,AC?平面ABC,∴PA⊥AC,可得Rt△APC中,中线OA=PC又∵PA⊥BC,AB⊥BC,PA、AB是平面PAB内的相交直线∴BC⊥平面PAB,可得BC⊥PB因此Rt△BPC中,中线OB=PC∴O是三棱锥P﹣ABC的外接球心,∵Rt△PCA中,AC=,PA=∴PC=,可得外接球半径R=PC=∴外接球的表面积S=4πR2=5π故选A.点评:本题在特殊三棱锥中求外接球的表面积,着重考查了线面垂直的判定与性质、勾股定理和球的表面积公式等知识,属于中档题.6.已知函数是定义在实数集R上的奇函数,且当时,成立(其中的导函数),若,,则的大小关系是()
A.
B.
C.
D.参考答案:A略7.等差数列的前n项和为,且,则
(A)8
(B)9
(C)10
(D)11参考答案:B略8.已知函数有两个极值点,则实数的取值范围是(
)A
B
C
D参考答案:B9.下图是计算函数y=的值的程序框图,在①、②、③处应分别填入的是()A.y=ln(-x),y=0,y=2xB.y=ln(-x),y=2x,y=0C.y=0,y=2x,y=ln(-x)D.y=0,y=ln(-x),y=2x参考答案:B10.已知,则(A)
(B)
(C)
(D)参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.函数的定义域为
▲
.参考答案:12.若按如图所示的程序框图运行后,输出的结果是63,则判断框中的整数M的值是
.参考答案:6【考点】EF:程序框图.【分析】由图知每次进入循环体,S的值被施加的运算是乘以2加上1,由此运算规律进行计算,经过5次运算后输出的结果是63,故M=6.【解答】解:由图知运算规则是对S=2S+1,执行程序框图,可得A=1,S=1满足条件A<M,第1次进入循环体S=2×1+1=3,满足条件A<M,第2次进入循环体S=2×3+1=7,满足条件A<M,第3次进入循环体S=2×7+1=15,满足条件A<M,第4次进入循环体S=2×15+1=31,满足条件A<M,第5次进入循环体S=2×31+1=63,由于A的初值为1,每进入1次循环体其值增大1,第5次进入循环体后A=5;所以判断框中的整数M的值应为6,这样可保证循环体只能运行5次.故答案为:6.13.设全集,,,则
▲
.参考答案:【知识点】集合及其运算A1【答案解析】
由则,,所以故答案为。【思路点拨】先求出A的补集,再求结果。14.将参数方程(为参数,)化为普通方程,所得方程是_____
_____.参考答案:()
略15.执行框图,会打印出一列数,这个数列的第3项是.参考答案:30第一次循环,;第二次循环,;第三次循环,,所以数列的第三个数为.16.已知双曲线﹣=1(a>0,b>0)的右焦点为F,焦距为8,左顶点为A,在y轴上有一点B(0,b),满足?=2a,则该双曲线的离心率的值为
.参考答案:2【考点】双曲线的简单性质.【分析】利用向量的数量积公式,可得﹣4a+b2=2a,即16﹣a2=6a,可得a的值,由此可求双曲线的离心率.【解答】解:由题意,A(﹣a,0),F(4,0),B(0,b),∴=(﹣a,﹣b),=(4,﹣b)∵?=2a,∴(﹣a,﹣b)?(4,﹣b)=2a,∴﹣4a+b2=2a,∴b2=6a,∴16﹣a2=6a,∴a=2,∴e===2,故答案为:217.函数,又,,且的最小值等于,则正数的值为
▲
.参考答案:1
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数。(为常数,)(1)若是函数的一个极值点,求的值;(2)求证:当时,在上是增函数;(3)若对任意的,总存在,使不等式成立,求实数的取值范围。参考答案:解⑴(1)由已知,得且,…3分(2)当时,
当时,
又
故在上是增函数
……………6分(3)时,由(2)知,在上的最大值为于是问题等价于:对任意的,不等式恒成立。………………8分记则……………9分当时,
在区间上递减,此时由于,时不可能使恒成立,故必有……………11分若,可知在区间上递减,在此区间上,有,与恒成立相矛盾,故,这时,在上递增,恒有,满足题设要求,
即
实数的取值范围为
……………14分略19.已知=(2,﹣1),=(0,1),=(1,﹣2).(1)若=m+n,求实数m、n的值;(2)若(+)∥(+),求||的最小值.参考答案:【考点】平面向量的坐标运算.【分析】(1)由平面向量的线性运算与坐标表示,列出方程组求出m、n的值;(2)设,根据平面向量的共线定理求出x、y的关系,再求||的最小值.【解答】解:(1)由=(2,﹣1),=(0,1),=(1,﹣2);且=m+,∴(2,﹣1)=(n,m﹣2n),解得m=3,n=2;…(2)设,则,又,由(+)∥(+)知,﹣(2+x)=﹣1+y,即y=﹣x﹣1,…,即||的最小值为.…20.(本小题满分14分)已知数列{}的前n项和(n为正整数)。(I)令,求证数列{}是等差数列,并求数列{}的通项公式;(Ⅱ)令,,求并证明:<3.参考答案:(Ⅰ)在中,令n=1,可得,即..............1当时,,...............................................4......................................................5
...........................................................6又数列是首项和公差均为1的等差数列.............................................7于是...........................................9(II)由(I)得,所以……….10由①-②得
所以………………1421.设函数f(x)=aex(x+1)(其中e=2.71828…),g(x)=x2+bx+2,已知它们在x=0处有相同的切线.(Ⅰ)求函数f(x),g(x)的解析式;(Ⅱ)求函数f(x)在[t,t+1](t>﹣3)上的最小值;(Ⅲ)若对?x≥﹣2,kf(x)≥g(x)恒成立,求实数k的取值范围.参考答案:考点:利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.专题:综合题.分析:(Ⅰ)求导函数,利用两函数在x=0处有相同的切线,可得2a=b,f(0)=a=g(0)=2,即可求函数f(x),g(x)的解析式;(Ⅱ)求导函数,确定函数的单调性,再分类讨论,即可求出函数f(x)在[t,t+1](t>﹣3)上的最小值;(Ⅲ)令F(x)=kf(x)﹣g(x)=2kex(x+1)﹣x2﹣4x﹣2,对?x≥﹣2,kf(x)≥g(x)恒成立,可得当x≥﹣2,F(x)min≥0,即可求实数k的取值范围.解答: 解:(Ⅰ)f'(x)=aex(x+2),g'(x)=2x+b﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由题意,两函数在x=0处有相同的切线.∴f'(0)=2a,g'(0)=b,∴2a=b,f(0)=a=g(0)=2,∴a=2,b=4,∴f(x)=2ex(x+1),g(x)=x2+4x+2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)f'(x)=2ex(x+2),由f'(x)>0得x>﹣2,由f'(x)<0得x<﹣2,∴f(x)在(﹣2,+∞)单调递增,在(﹣∞,﹣2)单调递减.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵t>﹣3,∴t+1>﹣2①当﹣3<t<﹣2时,f(x)在[t,﹣2]单调递减,[﹣2,t+1]单调递增,∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②当t≥﹣2时,f(x)在[t,t+1]单调递增,∴;∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)令F(x)=kf(x)﹣g(x)=2kex(x+1)﹣x2﹣4x﹣2,由题意当x≥﹣2,F(x)min≥0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵?x≥﹣2,kf(x)≥g(x)恒成立,∴F(0)=2k﹣2≥0,∴k≥1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣F'(x)=2kex(x+1)+2kex﹣2x﹣4=2(x+2)(kex﹣1),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵x≥﹣2,由F'(x)>0得,∴;由F'(x)<0得∴F(x)在单调递减,在单调递增﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣①当,即k>e2时,F(x)在[﹣2,+∞)单调递增,,不满足F(x)min≥0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②当,即k=e2时,由①知,,满足F(x)min≥0.﹣﹣﹣﹣﹣﹣﹣③当,即1≤k<e2时,F(x)在单调递减,在单调递增,满足F(x)min≥0.综上所述,满足题意的k的取值范围为[1,e2].﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣点评:本题考查导数的几何意义,考查函数的单调性,考查函数的最值,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.22.(本小题满分14分)根据如图所示的程序框图,将输出的值依次分别记为(Ⅰ)求数列的通项公式;(Ⅱ)写出,由此猜想的通项公式,并证明你的结论;(Ⅲ)在与中插入个3得到一个新数列,设数列的前n项和为,问是否存在这样的正整数m,使数列的前m项的和,如果存在,求出m的值,如果不存在,请说明理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四年级数学(简便运算)计算题专项练习与答案
- 联合企业激励协议书(2篇)
- 癌症康复课件教学课件
- 南京航空航天大学《电机学》2021-2022学年期末试卷
- 南京工业大学浦江学院《信息交互设计》2022-2023学年第一学期期末试卷
- 南京工业大学浦江学院《设计原理与设计管理》2021-2022学年第一学期期末试卷
- 分数的产生和意义说课稿
- 蹲踞式跳远示范说课稿
- 银凯工业园孵化产业园一区二期工程施工组织设计
- 《夏天的雷雨》的说课稿
- (高清版)TDT 1062-2021 社区生活圈规划技术指南
- 安全生产治本攻坚三年行动方案(2024-2026年)解读
- T-GDWJ 020-2023 医疗机构医疗护理员服务规范
- 子宫内低氧症护理措施
- 中国健康生活方式预防心血管代谢疾病指南
- 跨境电子商务平台的数据治理策略
- 2024教师行业分析
- 安徽省宿州市省、市示范高中20232024学年高二上学期期中教学质量检测语文试题(解析)
- 幼儿教师职业礼仪中职全套教学课件
- 创业培训-SYB推广介绍课件
- 血栓预防宣教
评论
0/150
提交评论